Les galaxies sont des sondes observationnelles pour l'étude des structures de l'Univers. Leur mouvement gravitationnel permet de tracer la densité totale de matière. Par ailleurs, l'étude de la formation des structures et galaxies s'appuie sur les simulations numériques cosmologiques. Cependant, un seul univers observable à partir d'une position donnée, en temps et espace, est disponible pour comparaison avec les simulations. La variance cosmique associée affecte notre capacité à interpréter les résultats. Les simulations contraintes par les données observationnelles constituent une solution optimale au problème. Réaliser de telles simulations requiert les projets Cosmicflows et CLUES. Cosmicflows construits des catalogues de mesures de distances précises afin d'obtenir les déviations de l'expansion. Ces mesures sont principalement obtenues avec la corrélation entre la luminosité des galaxies et la vitesse de rotation de leur gaz. La calibration de cette relation est présentée dans le mi-infrarouge avec les observations du télescope spatial Spitzer. Les estimations de distances résultantes seront intégrées au troisième catalogue de données du projet. En attendant, deux catalogues de mesures atteignant 30 et 150 h−1 Mpc ont été publiés. Les améliorations et applications de la méthode du projet CLUES sur les deux catalogues sont présentées. La technique est basée sur l'algorithme de réalisation contrainte. L'approximation de Zel'dovich permet de calculer le champ de déplacement cosmique. Son inversion repositionne les contraintes tridimensionnelles reconstruites à l'emplacement de leur précurseur dans le champ initial. La taille inégalée, 8000 galaxies jusqu'`a une distance de 150 h−1 Mpc, du second catalogue a mis en évidence l'importance de minimiser les biais observationnels. En réalisant des tests sur des catalogues de similis, issus des simulations cosmologiques, une méthode de minimisation des biais peut être dérivée. Finalement, pour la première fois, des simulations cosmologiques sont contraintes uniquement par des vitesses particulières de galaxies. Le procédé est une réussite car les simulations obtenues ressemblent à l'Univers Local. Les principaux attracteurs et vides sont simulés à des positions approchant de quelques mégaparsecs les positions observationnelles, atteignant ainsi la limite fixée par la théorie linéaire / Galaxies are observational probes to study the Large Scale Structure. Their gravitational motions are tracers of the total matter density and therefore of the Large Scale Structure. Besides, studies of structure formation and galaxy evolution rely on numerical cosmological simulations. Still, only one universe observable from a given position, in time and space, is available for comparisons with simulations. The related cosmic variance affects our ability to interpret the results. Simulations constrained by observational data are a perfect remedy to this problem. Achieving such simulations requires the projects Cosmicflows and CLUES. Cosmicflows builds catalogs of accurate distance measurements to map deviations from the expansion. These measures are mainly obtained with the galaxy luminosity-rotation rate correlation. We present the calibration of that relation in the mid-infrared with observational data from Spitzer Space Telescope. Resulting accurate distance estimates will be included in the third catalog of the project. In the meantime, two catalogs up to 30 and 150 h−1 Mpc have been released. We report improvements and applications of the CLUES’ method on these two catalogs. The technique is based on the constrained realization algorithm. The cosmic displacement field is computed with the Zel’dovich approximation. This latter is then reversed to relocate reconstructed three-dimensional constraints to their precursors’ positions in the initial field. The size of the second catalog (8000 galaxies within 150 h−1 Mpc) highlighted the importance of minimizing the observational biases. By carrying out tests on mock catalogs, built from cosmological simulations, a method to minimize observational bias can be derived. Finally, for the first time, cosmological simulations are constrained solely by peculiar velocities. The process is successful as resulting simulations resemble the Local Universe. The major attractors and voids are simulated at positions approaching observational positions by a few megaparsecs, thus reaching the limit imposed by the linear theory / Die Verteilung der Galaxien liefert wertvolle Erkenntnisse über die großräumigen Strukturen im Universum. Ihre durch Gravitation verursachte Bewegung ist ein direkter Tracer für die Dichteverteilung der gesamten Materie. Die Strukturentstehung und die Entwicklung von Galaxien wird mithilfe von numerischen Simulationen untersucht. Es gibt jedoch nur ein einziges beobachtbares Universum, welches mit der Theorie und den Ergebnissen unterschiedlicher Simulationen verglichen werden muß. Die kosmische Varianz erschwert es, das lokale Universum mit Simulationen zu reproduzieren. Simulationen, deren Anfangsbedingungen durch Beobachtungsdaten eingegrenzt sind (“Constrained Simulations”) stellen eine geeignete Lösung dieses Problems dar. Die Durchführung solcher Simulationen ist das Ziel der Projekte Cosmicflows und CLUES. Im Cosmicflows-Projekt werden genaue Entfernungsmessungen von Galaxien erstellt, welche die Abweichung von der allgemeinen Hubble- Expansion abbilden. Diese Messungen werden hauptsächlich aus der Korrelation zwischen Leuchtkraft und Rotationsgeschwindigkeit von Spiralgalaxien gewonnen. In dieser Arbeit wird die Kalibrierung dieser Beziehung im mittleren Infrarot mithilfe von Daten vom Spitzer Space Telescope vorgestellt. Diese neuen Entfernungsbestimmungen werden im dritten Katalog des Cosmicflows Projekts enthalten sein. Bisher wurden zwei Kataloge veröffentlicht, mit Entfernungen bis zu 30 beziehungsweise 150 h−1 Mpc. In dieser Arbeit wird die CLUESMethode auf diese zwei Kataloge angewendet und Verbesserungen warden vorgestellt und diskutiert. Zunächst wird das kosmische Verschiebungsfeld mithilfe der Zeldovich-Näherung bestimmt. In umgekehrter Richtung kann man damit die aus heutigen Beobachtungsdaten rekonstruierten dreidimensionalen Constraints an ihren Ursprungsort im frühen Universum zurückzuversetzen. Durch den großen Datenumfang des cosmicflows-2 Katalogs (8000 Galaxien bis zu einer Entfernung von 150 h−1 Mpc) ist es besonders wichtig, den Einfluss verschiedener Beobachtungsfehler zu minimieren. Eine für das lokale Universum angepasste Korrekturmethode lässt sich durch die Untersuchung von Mock-Katalogen finden, welche aus kosmologischen Simulationen gewonnen werden. Schließlich stellt diese Arbeit erstmals kosmologische Simulationen vor, die ausschließlich durch Pekuliargeschwindigkeiten eingegrenzt sind. Der Erfolg dieser Methode wird dadurch bestätigt, dass die dadurch erzeugten Simulationen dem beobachteten lokalen Universum sehr ähnlich sind. Die relevanten Attraktoren und Voids liegen in den Simulationen an Positionen, welche bis auf wenige Megaparsec mit den beobachteten Positionen übereinstimmen. Die Simulationen erreichen damit die durch die lineare Theorie gegebene Genauigkeitsgrenze
Identifer | oai:union.ndltd.org:theses.fr/2014LYO10078 |
Date | 12 June 2014 |
Creators | Sorce, Jenny |
Contributors | Lyon 1, Universität Potsdam, Courtois, Hélène, Steinmetz, Matthias |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0035 seconds