Cropland management practices have traditionally focused on maximising the production of food, feed and fibre. However, croplands also provide valuable regulating ecosystem services, including carbon (C) storage in soil and biomass. Consequently, management impacts the extents to which croplands act as sources or sinks of atmospheric carbon dioxide (CO2). And so, reliable information on cropland ecosystem C fluxes and yields are essential for policy-makers concerned with climate change mitigation and food security. Eddy-covariance (EC) flux towers can provide observations of net ecosystem exchanges (NEE) of CO2 within croplands, however the tower sites are temporally and spatially sparse. Process-based crop models simulate the key biophysical mechanisms within cropland ecosystems, including the management impacts, crop cultivar, soil and climate on crop C dynamics. The models are therefore a powerful tool for diagnosing and forecasting C fluxes and yield. However, crop model spatial upscaling is often limited by input data (including meteorological drivers and management), parameter uncertainty and model complexity. Earth observation (EO) sensors can provide regular estimates of crop condition over large extents. Therefore, EO data can be used within data assimilation (DA) schemes to parameterise and constrain models. Research presented in this thesis explores the key challenges associated with crop model upscaling. First, fine-scale (20-50 m) EO-derived data, from optical and radar sensors, is assimilated into the Soil-Plant-Atmosphere crop (SPAc) model. Assimilating all EO data enhanced the simulation of daily C exchanges at multiple European crop sites. However, the individually assimilation of radar EO data (as opposed to combined with optical data) resulted in larger improvements in the C fluxes simulation. Second, the impacts of reduced model complexity and driver resolution on crop photosynthesis estimates are investigated. The simplified Aggregated Canopy Model (ACM) – estimating daily photosynthesis using coarse-scale (daily) drivers – was calibrated using the detailed SPAc model, which simulates leaf to canopy processes at half-hourly time-steps. The calibrated ACM photosynthesis had a high agreement with SPAc and local EC estimates. Third, a model-data fusion framework was evaluated for multi-annual and regional-scale estimation of UK wheat yields. Aggregated model yield estimates were negatively biased when compared to official statistics. Coarse-scale (1 km) EO data was also used to constrain the model simulation of canopy development, which was successful in reducing the biases in the yield estimates. And fourth, EO spatial and temporal resolution requirements for crop growth monitoring at UK field-scales was investigated. Errors due to spatial resolution are quantified by sampling aggregated fine scale EO data on a per-field basis; whereas temporal resolution error analysis involved re-sampling model estimates to mimic the observational frequencies of current EO sensors and likely cloud cover. A minimum EO spatial resolution of around 165 m is required to resolve the field-scale detail. Monitoring crop growth using EO sensors with a 26-day temporal resolution results in a mean error of 5%; however, accounting for likely cloud cover increases this error to 63%.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:712334 |
Date | January 2016 |
Creators | Revill, Andrew |
Contributors | Williams, Mathew ; Nichol, Caroline |
Publisher | University of Edinburgh |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/1842/20975 |
Page generated in 0.0021 seconds