Return to search

Performance Optimizations and Operator Semantics for Streaming Data Flow Programs

Unternehmen sammeln mehr Daten als je zuvor und müssen auf diese Informationen zeitnah reagieren. Relationale Datenbanken eignen sich nicht für die latenzfreie Verarbeitung dieser oft unstrukturierten Daten. Um diesen Anforderungen zu begegnen, haben sich in der Datenbankforschung seit dem Anfang der 2000er Jahre zwei neue Forschungsrichtungen etabliert: skalierbare Verarbeitung unstrukturierter Daten und latenzfreie Datenstromverarbeitung.

Skalierbare Verarbeitung unstrukturierter Daten, auch bekannt unter dem Begriff "Big Data"-Verarbeitung, hat in der Industrie schnell Einzug erhalten. Gleichzeitig wurden in der Forschung Systeme zur latenzfreien Datenstromverarbeitung entwickelt, die auf eine verteilte Architektur, Skalierbarkeit und datenparallele Verarbeitung setzen. Obwohl diese Systeme in der Industrie vermehrt zum Einsatz kommen, gibt es immer noch große Herausforderungen im praktischen Einsatz.

Diese Dissertation verfolgt zwei Hauptziele: Zuerst wird das Laufzeitverhalten von hochskalierbaren datenparallelen Datenstromverarbeitungssystemen untersucht. Im zweiten Hauptteil wird das "Dual Streaming Model" eingeführt, das eine Semantik zur gleichzeitigen Verarbeitung von Datenströmen und Tabellen beschreibt.

Das Ziel unserer Untersuchung ist ein besseres Verständnis über das Laufzeitverhalten dieser Systeme zu erhalten und dieses Wissen zu nutzen um Anfragen automatisch ausreichende Rechenkapazität zuzuweisen. Dazu werden ein Kostenmodell und darauf aufbauende Optimierungsalgorithmen für Datenstromanfragen eingeführt, die Datengruppierung und Datenparallelität einbeziehen.

Das vorgestellte Datenstromverarbeitungsmodell beschreibt das Ergebnis eines Operators als kontinuierlichen Strom von Veränderugen auf einer Ergebnistabelle. Dabei behandelt unser Modell die Diskrepanz der physikalischen und logischen Ordnung von Datenelementen inhärent und erreicht damit eine deterministische Semantik und eine minimale Verarbeitungslatenz. / Modern companies are able to collect more data and require insights from it faster than ever before. Relational databases do not meet the requirements for processing the often unstructured data sets with reasonable performance. The database research community started to address these trends in the early 2000s. Two new research directions have attracted major interest since: large-scale non-relational data processing as well as low-latency data stream processing.

Large-scale non-relational data processing, commonly known as "Big Data" processing, was quickly adopted in the industry. In parallel, low latency data stream processing was mainly driven by the research community developing new systems that embrace a distributed architecture, scalability, and exploits data parallelism. While these systems have gained more and more attention in the industry, there are still major challenges to operate them at large scale.

The goal of this dissertation is two-fold: First, to investigate runtime characteristics of large scale data-parallel distributed streaming systems.
And second, to propose the "Dual Streaming Model" to express semantics of continuous queries over data streams and tables.

Our goal is to improve the understanding of system and query runtime behavior with the aim to provision queries automatically. We introduce a cost model for streaming data flow programs taking into account the two techniques of record batching and data parallelization. Additionally, we introduce optimization algorithms that leverage our model for cost-based query provisioning.

The proposed Dual Streaming Model expresses the result of a streaming operator as a stream of successive updates to a result table, inducing a duality between streams and tables. Our model handles the inconsistency of the logical and the physical order of records within a data stream natively,
which allows for deterministic semantics as well as low latency query execution.

Identiferoai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/22285
Date01 July 2020
CreatorsSax, Matthias J.
ContributorsFreytag, Johann-Christoph, Kao, Odej, Nicklas, Daniela
PublisherHumboldt-Universität zu Berlin
Source SetsHumboldt University of Berlin
LanguageEnglish
Detected LanguageGerman
TypedoctoralThesis, doc-type:doctoralThesis
Formatapplication/pdf
Rights(CC BY-NC-ND 4.0) Attribution-NonCommercial-NoDerivatives 4.0 International, https://creativecommons.org/licenses/by-nc-nd/4.0/
Relation10.1145/3242153.3242155, 10.1109/ICDEW.2013.6547428, 10.1007/978-3-319-63962-8_196-1, 10.1109/ICDE.2013.6544924

Page generated in 0.0026 seconds