Return to search

Hybrid evolutionary routing optimisation for wireless sensor mesh networks

Battery powered wireless sensors are widely used in industrial and regulatory monitoring applications. This is primarily due to the ease of installation and the ability to monitor areas that are difficult to access. Additionally, they can be left unattended for long periods of time. However, there are many challenges to successful deployments of wireless sensor networks (WSNs). In this thesis we draw attention to two major challenges. Firstly, with a view to extending network range, modern WSNs use mesh network topologies, where data is sent either directly or by relaying data from node-to-node en route to the central base station. The additional load of relaying other nodes’ data is expensive in terms of energy consumption, and depending on the routes taken some nodes may be heavily loaded. Hence, it is crucial to locate routes that achieve energy efficiency in the network and extend the time before the first node exhausts its battery, thus improving the network lifetime. Secondly, WSNs operate in a dynamic radio environment. With changing conditions, such as modified buildings or the passage of people, links may fail and data will be lost as a consequence. Therefore in addition to finding energy efficient routes, it is important to locate combinations of routes that are robust to the failure of radio links. Dealing with these challenges presents a routing optimisation problem with multiple objectives: find good routes to ensure energy efficiency, extend network lifetime and improve robustness. This is however an NP-hard problem, and thus polynomial time algorithms to solve this problem are unavailable. Therefore we propose hybrid evolutionary approaches to approximate the optimal trade-offs between these objectives. In our approach, we use novel search space pruning methods for network graphs, based on k-shortest paths, partially and edge disjoint paths, and graph reduction to combat the combinatorial explosion in search space size and consequently conduct rapid optimisation. The proposed methods can successfully approximate optimal Pareto fronts. The estimated fronts contain a wide range of robust and energy efficient routes. The fronts typically also include solutions with a network lifetime close to the optimal lifetime if the number of routes per nodes were unconstrained. These methods are demonstrated in a real network deployed at the Victoria & Albert Museum, London, UK.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:684109
Date January 2015
CreatorsRahat, Alma As-Aad Mohammad
ContributorsEverson, Richard ; Fieldsend, Jonathan
PublisherUniversity of Exeter
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/10871/21330

Page generated in 0.0018 seconds