Electrocardiography (ECG) is a non-invasive method used in medicine to track the electrical pulses sent by the heart. The time between two subsequent electrical impulses and hence the heartbeat of a subject, is referred to as an RR interval. Previous studies show that RR intervals can be used for identifying sleep patterns and cardiovascular diseases. Additional research indicates that RR intervals can be used to predict the cardiovascular age of a subject. This thesis investigates, if this assumption is true, based on two different datasets as well as simulated data based on Gaussian Processes. The datasets used are Holter recordings provided by the University of Gdańsk as well as a dataset provided by Physionet. The former represents a balanced dataset of recordings during nocturnal sleep of healthy subjects whereas the latter one describes an imbalanced dataset of records of a whole day of subjects that suffered from myocardial infarction. Feature-based models as well as a deep learning architecture called DeepSleep, based on a paper for sleep stage detection, are trained. The results show, that the prediction of a subject's age, only based in RR intervals, is difficult. For the first dataset, the highest obtained test accuracy is 37.84 per cent, with a baseline of 18.23 per cent. For the second dataset, the highest obtained accuracy is 42.58 per cent with a baseline of 39.14 per cent. Furthermore, data is simulated by fitting Gaussian Processes to the first dataset and following a Bayesian approach by assuming a distribution for all hyperparameters of the kernel function in use. The distributions for the hyperparameters are continuously updated by fitting a Gaussian Process to a slices of around 2.5 minutes. Then, samples from the fitted Gaussian Process are taken as simulated data, handling impurity and padding. The results show that the highest accuracy achieved is 31.12 per cent with a baseline of 18.23 per cent. Concludingly, cardiovascular age prediction based on RR intervals is a difficult problem and complex handling of impurity does not necessarily improve the results.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-165987 |
Date | January 2020 |
Creators | Pfundstein, Maximilian |
Publisher | Linköpings universitet, Statistik och maskininlärning |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0024 seconds