In this work a suggested method to reduce the energy consumption of the cooling system in a data center is modelled and evaluated. Introduced is different approaches to distributed airflow control, in which different amounts of airflow can be supplied in different parts of the data center (instead of an even airflow distribution). Two different kinds of distributed airflow control are compared to a traditional approach without airflow control. The difference between the two control approaches being the type of server rack used, either traditional ones or a new kind of rack with vertically placed servers. A model capable of describing the power consumption of the data center cooling system for these different approaches to airflow control was constructed. Based on the model, MATLAB simulations of three different server work load scenarios were then carried out. It was found that introducing distributed airflow control reduced the power consumption for all scenarios and that the control approach with the new kind of rack had the largest reduction. For this case the power consumption of the cooling system could be reduced to 60% - 69% of the initial consumption, depending on the workload scenario. Also examined was the effect on the data center of different parameters and process variables (parameters held fixed with the help of feedback loops), as well as optimal set point values.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kau-36479 |
Date | January 2015 |
Creators | Lindberg, Therese |
Publisher | Karlstads universitet, Institutionen för ingenjörsvetenskap och fysik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0017 seconds