Return to search

Hluboké neuronové sítě a jejich využití při zpracování ekonomických dat / Deep neural networks and their application for economic data processing

Title: Deep neural networks and their application for economic data processing Author: Bc. Tomáš Witzany Department: Department of Theoretical Computer Science and Mathematical Logic Supervisor: Doc. RNDr. Iveta Mrázová, CSc., Department of Theoretical Com- puter Science and Mathematical Logic Abstract: Analysis of macroeconomic time-series is key for the informed decisions of national policy makers. Economic analysis has a rich history, however when considering modeling non-linear dependencies there are many unresolved issues in this field. One of the possible tools for time-series analysis are machine learn- ing methods. Of these methods, neural networks are one of the commonly used methods to model non-linear dependencies. This work studies different types of deep neural networks and their applicability for different analysis tasks, including GDP prediction and country classification. The studied models include multi- layered neural networks, LSTM networks, convolutional networks and Kohonen maps. Historical data of the macroeconomic development across over 190 differ- ent countries over the past fifty years is presented and analysed. This data is then used to train various models using the mentioned machine learning methods. To run the experiments we used the services of the computer center MetaCentrum....

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:352439
Date January 2017
CreatorsWitzany, Tomáš
ContributorsMrázová, Iveta, Křen, Tomáš
Source SetsCzech ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0021 seconds