Return to search

Učení bez učitele / Unsupervised learning

The purpose of this work has been to describe some techniques which are normally used for cluster data analysis process of unsupervised learning. The thesis consists of two parts. The first part of thesis has been focused on some algorithms theory describing advantages and disadvantages of each discussed method and validation of clusters quality. There are many ways how to estimate and compute clustering quality based on internal and external knowledge which is mentioned in this part. A good technique of clustering quality validation is one of the most important parts in cluster analysis. The second part of thesis deals with implementation of different clustering techniques and programs on real datasets and their comparison with true dataset partitioning and published related work.

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:217651
Date January 2008
CreatorsKantor, Jan
ContributorsSáblík, Václav, Honzík, Petr
PublisherVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií
Source SetsCzech ETDs
LanguageCzech
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0016 seconds