Return to search

Intelligent Autonomous Data Categorization

The goal of this research was to determine if the results of a simple comparison algorithm (SCA) could be improved by adding a hyperspace analogue to language model of memory (HAL) layer to form NCA. The HAL layer provides contextual data that otherwise would be unavailable for consideration. It was found that NCA did improve the results when compared to SCA alone. However, NCA added complexity problems that limit its practicality. The complexity of this algorithm is On3 where n is equal to the number of unique symbols in the data. While there is a relativity reasonable soft upper bound for the number of unique symbols used in a language, the complexity still limits the uses of the NCA combined algorithm. The conclusion from this research is that NCA can improve results. This research also suggested that the quality of results might increase as more data is processed by NCA.

Identiferoai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd-2342
Date01 January 2005
CreatorsFinegan, Edward Graham
PublisherVCU Scholars Compass
Source SetsVirginia Commonwealth University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rights© The Author

Page generated in 0.0017 seconds