Un système de surveillance environnementale collecte et analyse continuellement les flux de données générés par les capteurs environnementaux. L'objectif du processus de surveillance est de filtrer les informations utiles et fiables et d'inférer de nouvelles connaissances qui aident l'exploitant à prendre rapidement les bonnes décisions. L'ensemble de ce processus, de la collecte à l'analyse des données, soulève deux problèmes majeurs : le volume de données et la qualité des données. D'une part, le débit des flux de données générés n'a pas cessé d'augmenter sur les dernières années, engendrant un volume important de données continuellement envoyées au système de surveillance. Le taux d'arrivée des données est très élevé par rapport aux capacités de traitement et de stockage disponibles du système de surveillance. Ainsi, un stockage permanent et exhaustif des données est très coûteux, voire parfois impossible. D'autre part, dans un monde réel tel que les environnements des capteurs, les données sont souvent de mauvaise qualité, elles contiennent des valeurs bruitées, erronées et manquantes, ce qui peut conduire à des résultats défectueux et erronés. Dans cette thèse, nous proposons une solution appelée filtrage natif, pour traiter les problèmes de qualité et de volume de données. Dès la réception des données des flux, la qualité des données sera évaluée et améliorée en temps réel en se basant sur un modèle de gestion de la qualité des données que nous proposons également dans cette thèse. Une fois qualifiées, les données seront résumées en utilisant des algorithmes d'échantillonnage. En particulier, nous nous sommes intéressés à l'analyse de l'algorithme Chain-sample que nous comparons à d'autres algorithmes de référence comme l'échantillonnage probabiliste, l'échantillonnage déterministe et l'échantillonnage pondéré. Nous proposons aussi deux nouvelles versions de l'algorithme Chain-sample améliorant sensiblement son temps d'exécution. L'analyse des données du flux est également abordée dans cette thèse. Nous nous intéressons particulièrement à la détection des anomalies. Deux algorithmes sont étudiés : Moran scatterplot pour la détection des anomalies spatiales et CUSUM pour la détection des anomalies temporelles. Nous avons conçu une méthode améliorant l'estimation de l'instant de début et de fin de l'anomalie détectée dans CUSUM. Nos travaux ont été validés par des simulations et aussi par des expérimentations sur deux jeux de données réels et différents : Les données issues des capteurs dans le réseau de distribution de l'eau potable fournies dans le cadre du projet Waves et les données relatives au système de vélo en libre-service (Velib). / An environmental monitoring system continuously collects and analyzes the data streams generated by environmental sensors. The goal of the monitoring process is to filter out useful and reliable information and to infer new knowledge that helps the network operator to make quickly the right decisions. This whole process, from the data collection to the data analysis, will lead to two keys problems: data volume and data quality. On the one hand, the throughput of the data streams generated has not stopped increasing over the last years, generating a large volume of data continuously sent to the monitoring system. The data arrival rate is very high compared to the available processing and storage capacities of the monitoring system. Thus, permanent and exhaustive storage of data is very expensive, sometimes impossible. On the other hand, in a real world such as sensor environments, the data are often dirty, they contain noisy, erroneous and missing values, which can lead to faulty and defective results. In this thesis, we propose a solution called native filtering, to deal with the problems of quality and data volume. Upon receipt of the data streams, the quality of the data will be evaluated and improved in real-time based on a data quality management model that we also propose in this thesis. Once qualified, the data will be summarized using sampling algorithms. In particular, we focus on the analysis of the Chain-sample algorithm that we compare against other reference algorithms such as probabilistic sampling, deterministic sampling, and weighted sampling. We also propose two new versions of the Chain-sample algorithm that significantly improve its execution time. Data streams analysis is also discussed in this thesis. We are particularly interested in anomaly detection. Two algorithms are studied: Moran scatterplot for the detection of spatial anomalies and CUSUM for the detection of temporal anomalies. We have designed a method that improves the estimation of the start time and end time of the anomaly detected in CUSUM. Our work was validated by simulations and also by experimentation on two real and different data sets: The data issued from sensors in the water distribution network provided as part of the Waves project and the data relative to the bike sharing system (Velib).
Identifer | oai:union.ndltd.org:theses.fr/2018SORUS170 |
Date | 04 July 2018 |
Creators | El Sibai, Rayane |
Contributors | Sorbonne université, Université libanaise, Chiky, Raja, Barbar, Kablan |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image |
Page generated in 0.0014 seconds