Return to search

Induction of classification rules and decision trees using genetic algorithms.

Ng Sai-Cheong. / Thesis submitted in: December 2004. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 172-178). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgement --- p.iii / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Data Mining --- p.1 / Chapter 1.2 --- Problem Specifications and Motivations --- p.3 / Chapter 1.3 --- Contributions of the Thesis --- p.5 / Chapter 1.4 --- Thesis Roadmap --- p.6 / Chapter 2 --- Related Work --- p.9 / Chapter 2.1 --- Supervised Classification Techniques --- p.9 / Chapter 2.1.1 --- Classification Rules --- p.9 / Chapter 2.1.2 --- Decision Trees --- p.11 / Chapter 2.2 --- Evolutionary Algorithms --- p.19 / Chapter 2.2.1 --- Genetic Algorithms --- p.19 / Chapter 2.2.2 --- Genetic Programming --- p.24 / Chapter 2.2.3 --- Evolution Strategies --- p.26 / Chapter 2.2.4 --- Evolutionary Programming --- p.32 / Chapter 2.3 --- Applications of Evolutionary Algorithms to Induction of Classification Rules --- p.33 / Chapter 2.3.1 --- SCION --- p.33 / Chapter 2.3.2 --- GABIL --- p.34 / Chapter 2.3.3 --- LOGENPRO --- p.35 / Chapter 2.4 --- Applications of Evolutionary Algorithms to Construction of Decision Trees --- p.35 / Chapter 2.4.1 --- Binary Tree Genetic Algorithm --- p.35 / Chapter 2.4.2 --- OC1-GA --- p.36 / Chapter 2.4.3 --- OC1-ES --- p.38 / Chapter 2.4.4 --- GATree --- p.38 / Chapter 2.4.5 --- Induction of Linear Decision Trees using Strong Typing GP --- p.39 / Chapter 2.5 --- Spatial Data Structures and its Applications --- p.40 / Chapter 2.5.1 --- Spatial Data Structures --- p.40 / Chapter 2.5.2 --- Applications of Spatial Data Structures --- p.42 / Chapter 3 --- Induction of Classification Rules using Genetic Algorithms --- p.45 / Chapter 3.1 --- Introduction --- p.45 / Chapter 3.2 --- Rule Learning using Genetic Algorithms --- p.46 / Chapter 3.2.1 --- Population Initialization --- p.47 / Chapter 3.2.2 --- Fitness Evaluation of Chromosomes --- p.49 / Chapter 3.2.3 --- Token Competition --- p.50 / Chapter 3.2.4 --- Chromosome Elimination --- p.51 / Chapter 3.2.5 --- Rule Migration --- p.52 / Chapter 3.2.6 --- Crossover --- p.53 / Chapter 3.2.7 --- Mutation --- p.55 / Chapter 3.2.8 --- Calculating the Number of Correctly Classified Training Samples in a Rule Set --- p.56 / Chapter 3.3 --- Performance Evaluation --- p.56 / Chapter 3.3.1 --- Performance Comparison of the GA-based CPRLS and Various Supervised Classifi- cation Algorithms --- p.57 / Chapter 3.3.2 --- Performance Comparison of the GA-based CPRLS and RS-based CPRLS --- p.68 / Chapter 3.3.3 --- Effects of Token Competition --- p.69 / Chapter 3.3.4 --- Effects of Rule Migration --- p.70 / Chapter 3.4 --- Chapter Summary --- p.73 / Chapter 4 --- Genetic Algorithm-based Quadratic Decision Trees --- p.74 / Chapter 4.1 --- Introduction --- p.74 / Chapter 4.2 --- Construction of Quadratic Decision Trees --- p.76 / Chapter 4.3 --- Evolving the Optimal Quadratic Hypersurface using Genetic Algorithms --- p.77 / Chapter 4.3.1 --- Population Initialization --- p.80 / Chapter 4.3.2 --- Fitness Evaluation --- p.81 / Chapter 4.3.3 --- Selection --- p.81 / Chapter 4.3.4 --- Crossover --- p.82 / Chapter 4.3.5 --- Mutation --- p.83 / Chapter 4.4 --- Performance Evaluation --- p.84 / Chapter 4.4.1 --- Performance Comparison of the GA-based QDT and Various Supervised Classification Algorithms --- p.85 / Chapter 4.4.2 --- Performance Comparison of the GA-based QDT and RS-based QDT --- p.92 / Chapter 4.4.3 --- Effects of Changing Parameters of the GA-based QDT --- p.93 / Chapter 4.5 --- Chapter Summary --- p.109 / Chapter 5 --- Induction of Linear and Quadratic Decision Trees using Spatial Data Structures --- p.111 / Chapter 5.1 --- Introduction --- p.111 / Chapter 5.2 --- Construction of k-D Trees --- p.113 / Chapter 5.3 --- Construction of Generalized Quadtrees --- p.119 / Chapter 5.4 --- Induction of Oblique Decision Trees using Spatial Data Structures --- p.124 / Chapter 5.5. --- Induction of Quadratic Decision Trees using Spatial Data Structures --- p.130 / Chapter 5.6 --- Performance Evaluation --- p.139 / Chapter 5.6.1 --- Performance Comparison with Various Supervised Classification Algorithms --- p.142 / Chapter 5.6.2 --- Effects of Changing the Minimum Number of Training Samples at Each Node of a k-D Tree --- p.155 / Chapter 5.6.3 --- Effects of Changing the Minimum Number of Training Samples at Each Node of a Generalized Quadtree --- p.157 / Chapter 5.6.4 --- Effects of Changing the Size of Datasets . --- p.158 / Chapter 5.7 --- Chapter Summary --- p.160 / Chapter 6 --- Conclusions --- p.164 / Chapter 6.1 --- Contributions --- p.164 / Chapter 6.2 --- Future Work --- p.167 / Chapter A --- Implementation of Data Mining Algorithms Specified in the Thesis --- p.170 / Bibliography --- p.178

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_325300
Date January 2005
ContributorsNg, Sai-Cheong., Chinese University of Hong Kong Graduate School. Division of Computer Science and Engineering.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xv, 178 leaves : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0025 seconds