This thesis presents the unified bias analysis of subspace-based DOA estimation algorithms in terms of physical parameters such as source separation, signal coherence, number of senors and snapshots. The analysis reveals the direct relationship between the performance of the DOA algorithms and signal measurement conditions. Insights into different algorithms are provided. Based upon previous first-order subspace perturbations, second-order subspace perturbations are developed which provide basis for bias analysis and unification. Simulations verifying the theoretical bias analysis are presented.
Identifer | oai:union.ndltd.org:pdx.edu/oai:pdxscholar.library.pdx.edu:open_access_etds-5684 |
Date | 23 July 1993 |
Creators | Lu, Yang |
Publisher | PDXScholar |
Source Sets | Portland State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Dissertations and Theses |
Page generated in 0.0017 seconds