Return to search

Classification de bases de données déséquilibrées par des règles de décomposition / Handling imbalanced datasets by reconstruction rules in decomposition schemes

Le déséquilibre entre la distribution des a priori est rencontré dans un nombre très large de domaines. Les algorithmes d’apprentissage conventionnels sont moins efficaces dans la prévision d’échantillons appartenant aux classes minoritaires. Notre but est de développer une règle de reconstruction adaptée aux catégories de données biaisées. Nous proposons une nouvelle règle, la Reconstruction Rule par sélection, qui, dans le schéma ‘One-per-Class’, utilise la fiabilité, des étiquettes et des distributions a priori pour permettre de calculer une décision finale. Les tests démontrent que la performance du système s’améliore en utilisant cette règle plutôt que des règles classiques. Nous étudions également les règles dans l’ ‘Error Correcting Output Code’ (ECOC) décomposition. Inspiré par une règle de reconstitution de données statistiques conçue pour le ‘One-per-Class’ et ‘Pair-Wise Coupling’ des approches sur la décomposition, nous avons développé une règle qui s’applique à la régression ‘softmax’ sur la fiabilité afin d’évaluer la classification finale. Les résultats montrent que ce choix améliore les performances avec respect de la règle statistique existante et des règles de reconstructions classiques. Sur ce thème d’estimation fiable nous remarquons que peu de travaux ont porté sur l’efficacité de l’estimation postérieure dans le cadre de boosting. Suivant ce raisonnement, nous développons une estimation postérieure efficace en boosting Nearest Neighbors. Utilisant Universal Nearest Neighbours classification nous prouvons qu’il existe une sous-catégorie de fonctions, dont la minimisation apporte statistiquement de simples et efficaces estimateurs de Bayes postérieurs. / Disproportion among class priors is encountered in a large number of domains making conventional learning algorithms less effective in predicting samples belonging to the minority classes. We aim at developing a reconstruction rule suited to multiclass skewed data. In performing this task we use the classification reliability that conveys useful information on the goodness of classification acts. In the framework of One-per-Class decomposition scheme we design a novel reconstruction rule, Reconstruction Rule by Selection, which uses classifiers reliabilities, crisp labels and a-priori distributions to compute the final decision. Tests show that system performance improves using this rule rather than using well-established reconstruction rules. We investigate also the rules in the Error Correcting Output Code (ECOC) decomposition framework. Inspired by a statistical reconstruction rule designed for the One-per-Class and Pair-Wise Coupling decomposition approaches, we have developed a rule that applies softmax regression on reliability outputs in order to estimate the final classification. Results show that this choice improves the performances with respect to the existing statistical rule and to well-established reconstruction rules. On the topic of reliability estimation we notice that small attention has been given to efficient posteriors estimation in the boosting framework. On this reason we develop an efficient posteriors estimator by boosting Nearest Neighbors. Using Universal Nearest Neighbours classifier we prove that a sub-class of surrogate losses exists, whose minimization brings simple and statistically efficient estimators for Bayes posteriors.

Identiferoai:union.ndltd.org:theses.fr/2014NICE4007
Date07 March 2014
CreatorsD'Ambrosio, Roberto
ContributorsNice, Università Campus Bio-Medico di Roma, Barlaud, Michel, Iannello, Giulio
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.002 seconds