This thesis first maps
the relational computation onto Graphics Processing Units (GPU)s by designing a
series of tools and then
explores the different opportunities of reducing the limitation brought by the
memory hierarchy across the CPU and GPU system.
First, a complete end-to-end compiler and runtime infrastructure, Red Fox, is proposed. The
evaluation on the full set of
industry standard TPC-H queries on a single node GPU
shows on average Red Fox is 11.20x faster compared with a commercial database system on a state
of art CPU machine.
Second, a new compiler technique called kernel fusion is designed to fuse the code bodies of several
relational operators to reduce data movement. Third, a multi-predicate join algorithm is
designed for GPUs which can provide much better performance and be used with
more flexibility compared with kernel fusion.
Fourth, the GPU optimized multi-predicate join is integrated into a
multi-threaded CPU database runtime system that supports out-of-core
data set to solve real world problem.
This thesis presents key insights, lessons learned, measurements from the
implementations, and opportunities for further improvements.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/54405 |
Date | 07 January 2016 |
Creators | Wu, Haicheng |
Contributors | Yalamanchili, Sudhakar |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Language | en_US |
Detected Language | English |
Type | Dissertation |
Format | application/pdf |
Page generated in 0.0019 seconds