Industrial machines sometimes fail to operate as intended. Such failures can be more or less severe depending on the kind of machine and the circumstances of the failure. E.g. the failure of an industrial robotcan cause a hold-up of an entire assembly line costing the affected company large amounts of money each minute on hold. Research is rapidly moving forward in the area of artificial intelligence providing methods for efficient fault diagnosis of industrial machines. The nature of fault diagnosis of industrial machines lends itself naturally to case-based reasoning. Case-based reasoning is a method in the discipline of artificial intelligence based on the idea of assembling experience from problems and their solutions as ”cases” for reuse in solving future problems. Cases are stored in a case library, available for retrieval and reuse at any time.By collecting sensor data such as acoustic emission and current measurements from a machine and representing this data as the problem part of a case and consequently representing the diagnosed fault as the solution to this problem, a complete series of the events of a machine failure and its diagnosed fault can be stored in a case for future use.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:mdh-6539 |
Date | January 2009 |
Creators | Olsson, Erik |
Publisher | Mälardalens högskola, Akademin för innovation, design och teknik, Västerås : Mälardalens högskola |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Mälardalen University Press Dissertations, 1651-4238 ; 76 |
Page generated in 0.0021 seconds