Producing many varying instances of the same type of graphical resource for games can be of interest, such as trees or foliage. But when randomly generating graphical resources, you can often end up with many similar looking results or perhaps results that doesn't look like what it is meant to look like. This work investigates whether genetic algorithms can be applied to produce greater varying results when generating graphical resources by basing the fitness of each individual for each genetic generation on how similar the graphical resource is to previously generated resources. This work concludes from the limited work that was performed that while it seems possible that the use of genetic algorithms might be able to produce visually different graphical resources, Blender currently doesn't seem to be able to produce enough results in a reasonable time frame for this to be usable on a large scale.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-139332 |
Date | January 2017 |
Creators | Eriksson, Daniel |
Publisher | Linköpings universitet, Interaktiva och kognitiva system |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0023 seconds