Return to search

Implementing Object and Feature Detection Without Compromising the Performance

This thesis will cover how some computationally heavy algorithms used in digital image processing and computer vision are implemented with WebGL and computed on the graphics processing unit by utilizing GLSL-shaders. This thesis is based on an already implemented motion detection plug-in used in web based games. This plug-in is enhanced with new features and some already implemented algorithms are improved. The motion detection is based on image subtraction and uses the delta image from previous frames to determine motion. The plug-in is used in web based games so the performance is of utmost importance since bad performance leads to frustration and less immersion for the players Techniques brought up are edge detection, Gaussian filter, features from accelerated segment test(FAST) and Harris corner detection. These techniques will be implemented by utilizing the parallel structure of the GPU. Both Harris corner detection and features from accelerated segment test can be run in real time but the result of the Harris corner detection is the better of the two. The thesis will also cover different color spaces, how they are implemented and why they were implemented

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-129276
Date January 2016
CreatorsGerling, Jonas
PublisherLinköpings universitet, Programvara och system
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0026 seconds