Return to search

Verbesserung einer Erkennungs- und Normalisierungsmaschine für natürlichsprachige Zeitausdrücke

Digital gespeicherte Daten erfreuen sich einer stetig steigenden Verwendung. Insbesondere die computerbasierte Kommunikation über E-Mail, SMS, Messenger usw. hat klassische Kommunikationsmittel nahezu vollständig verdrängt. Einen Mehrwert aus diesen Daten zu generieren, ist sowohl im geschäftlichen als auch im privaten Bereich von entscheidender Bedeutung. Eine Möglichkeit den Nutzer zu unterstützen ist es, seine textuellen Daten umfassend zu analysieren und bestimmte Elemente hervorzuheben und ihm die Erstellung von Einträgen für Kalender, Adressbuch und dergleichen abzunehmen bzw. zumindest vorzubereiten. Eine weitere Möglichkeit stellt die semantische Suche in den Daten des Nutzers dar. Selbst mit Volltextsuche muss man bisher den genauen Wortlaut kennen, wenn man eine bestimmte Information sucht. Durch ein tiefgreifendes Verständnis für Zeit ist es nun aber möglich, über einen Zeitstrahl alle mit einem bestimmten Zeitpunkt oder einer Zeitspanne verknüpften Daten zu finden. Es existieren bereits viele Ansätze um Named Entity Recognition voll- bzw. semi-automatisch durchzuführen, aber insbesondere Verfahren, welche weitgehend sprachunabhängig arbeiten und sich somit leicht auf viele Sprachen skalieren lassen, sind kaum publiziert. Um ein solches Verfahren für natürlichsprachige Zeitausdrücke zu verbessern, werden in dieser Arbeit, basierend auf umfangreichen Analysen, Möglichkeiten vorgestellt. Es wird speziell eine Strategie entwickelt, die auf einem Verfahren des maschinellen Lernens beruht und so den manuellen Aufwand für die Unterstützung neuer Sprachen reduziert. Diese und weitere Strategien wurden implementiert und in die bestehende Architektur der Zeiterkennungsmaschine der ExB-Gruppe integriert.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:17239
Date27 February 2018
CreatorsThomas, Stefan
ContributorsHeyer, Gerhard, Universität Leipzig
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageGerman, German
Detected LanguageGerman
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:masterThesis, info:eu-repo/semantics/masterThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relationurn:nbn:de:bsz:15-qucosa2-163403, qucosa:16340

Page generated in 0.0019 seconds