In this study, the biodegradation potential of MTBE in uncontaminated and previously contaminated aquifer sediments under aerobic conditions was investigated. Laboratory microcosms were constructed using aquifer samples collected from three different areas of a shallow gasoline-contaminated aquifer in eastern Fairfax Co., Va in the Atlantic Coastal Plain province. Uncontaminated aquifer samples were collected upgradient of the plume, and contaminated aquifer samples were collected in the source area and in an area downgradient of the source. Biodegradation of MTBE was observed in microcosms that contained previously contaminated aquifer sediments. More complete degradation was observed in aquifer sediments containing a low level of petroleum contamination than in heavily contaminated aquifer sediments. Biodegradation of MTBE appeared to be limited by a lack of oxygen in heavily contaminated soils. When degradation was discernible it appeared to follow a first order pattern with a rate constant (l) of between 0.037 and 0.066 d-1, following a lag period of 20 to 40 days. In microcosms containing lightly contaminated aquifer material, MTBE was respiked during active metabolism, and degradation occurred with no lag or acclimation period. Results indicated that little or no degradation occurred in the microcosms containing uncontaminated soil. The results of this research suggest that the availability and level of petroleum hydrocarbon compounds influence indigenous microorganisms capable of degrading MTBE. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/43865 |
Date | 30 July 1999 |
Creators | Zoeckler, Jeff Radcliffe |
Contributors | Environmental Engineering, Love, Nancy G., Widdowson, Mark A., Novak, John T. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | FINAL.pdf |
Page generated in 0.0023 seconds