Return to search

Decoupled (SSA-based) register allocators : from theory to practice, coping with just-in-time compilation and embedded processors constraints

My thesis deals with register allocation. During this phase, the compiler has to assign variables of the source program, in an arbitrary big number, to actual registers of the processor, in a limited number k. Recent works, for instance the thesis of F. Bouchez and S. Hack, have shown that it is possible to split in two different decoupled step this phase: the spill - store the variables into memory to release registers - followed by the registers assignment. These works demonstrate the feasibility of this decoupling relying on a theoretic framework and some assumptions. In particular, it is sufficient to ensure after the spill step that the number of variables simultaneously live is below k.My thesis follows these works by showing how to apply this kind of approach when real-world constraints come in play: instructions encoding, ABI (application binary interface), register aliasing. Different approaches are proposed. They allow either to ignore these problems or to directly tackle them into the theoretic framework. The hypothesis of the models and the proposed solutions are evaluated and validated using a thorough experimental study with the compiler of STMicroelectronics. Finally, all these works have been done with the constraints of modern compilers in mind, the JIT (just-in-time) compilation, where the compilation time et the memory footprint of the compiler are key factors. We strive to offer solutions that cope with these criteria or improve the result until a given budget is reached. We, in particular, used the SSA (static single assignment) form to define algorithm like tree scan that generalizes linear scan based approaches proposed for JIT compilation.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00764405
Date07 December 2012
CreatorsColombet, Quentin
PublisherEcole normale supérieure de lyon - ENS LYON
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0011 seconds