Network embedding or representation learning is important for analyzing many real-world applications and systems, i.e., social networks, citation networks and communication networks. It targets at learning low-dimensional vector representations of nodes with preserved graph structure (e.g., link relations) and content (e.g., texts) information. The derived node representations can be directly applied in many downstream applications, including node classification, clustering and visualization.
In addition to the complex network structures, nodes may have rich non structure information such as labels and contents. Therefore, structure, label and content constitute different aspects of the entire network system that reflect node similarities from multiple complementary facets. This thesis focuses on multifaceted network embedding learning, which aims to efficiently incorporate distinct aspects of information such as node labels and node contents for cooperative low-dimensional representation learning together with node topology. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2020. / FAU Electronic Theses and Dissertations Collection
Identifer | oai:union.ndltd.org:fau.edu/oai:fau.digital.flvc.org:fau_44455 |
Contributors | Shi, Min (author), Tang, Yufei (Thesis advisor), Florida Atlantic University (Degree grantor), Department of Computer and Electrical Engineering and Computer Science, College of Engineering and Computer Science |
Publisher | Florida Atlantic University |
Source Sets | Florida Atlantic University |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation, Text |
Format | 146 p., online resource |
Rights | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder., http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0019 seconds