Return to search

Silicon-embedded magnetic components for on-chip integrated power applications

The objective of the proposed research is to design, fabricate, characterize and test silicon-embedded magnetic components for on-chip integrated power applications.
Driven by the trend towards continued system multi-functionality and miniaturization, MEMS technology can be used to enable fabrication of three-dimensional (3-D) functional devices into the silicon bulk, taking advantage of the 'dead volume' in the substrate and achieving a greater level of miniaturization and integration. As an example, one of the challenges in realizing ultra-compact high-frequency power converters lies in the integration of magnetic components due to their relatively large volume.
Embedding 3-D magnetic components within the wafer volume and implementing high-power, through-wafer interconnect for connection to circuitry on the wafer surface is a promising solution for achieving ultra-compact power converters, in which digital control circuitry and power switches are located on the wafer surface, and suitable magnetic components are embedded within the silicon substrate. In order to do this, key tasks in the following areas have been accomplished: development of new fabrication technologies for silicon embedding and 3-D structure realization; creation of high-current, through-wafer interconnects for connection of the device to circuitry; ability to incorporate a variety of magnetic materials when performance enhancement of the device is needed; exploration of a new design space for the devices due to ultra-compactness and silicon interaction; understanding of the complicated loss mechanisms in the embedded devices; and demonstration of device performance and in-circuit operation.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/54243
Date07 January 2016
CreatorsYu, Xuehong
ContributorsAllen, Mark G.
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeDissertation
Formatapplication/pdf

Page generated in 0.0023 seconds