Chez les eucaryotes, le génome est organisé en chromatine, une structure nucléoprotéique essentielle pour la régulation de l’expression génique ainsi que pour le maintien de la stabilité du génome. Les ciliés sont d’excellents organismes modèles pour étudier les mécanismes généraux qui maintiennent l’intégrité du génomes eucaryote. Chez Paramecium tetraurelia, la différentiation du génome somatique à partir du génome germinal est caractérisée par des événements massifs et reproductibles d’élimination d’ADN. D’une part, des éléments répétés (transposons,régions minisatellites), de plusieurs kilobases de long, sont imprécisément éliminés.D’autre part, 45000 séquences courtes et uniques, appelées IES, sont précisément éliminées au nucléotide près. Une classe de petits ARN, appelé scnRNAs, est impliquée dans la régulation epigénétique de l’élimination d’ADN, mais comment les scnRNA contrôlent l’élimination d’ADN reste mystérieux. Nous avons testé l’hypothèse selon laquelle une organisation particulière de la chromatine, en particulier des modifications post-traductionelles des histones associées à des formes répressives de la chromatine, est impliquée dans le processus d’élimination d’ADN. Nous avons montré que la triméthylation de l’histone H3 sur la lysine 9 et la lysine 27 (H3K9me3 et H3K27me3)apparaît transitoirement dans le noyau somatique en développement au moment où se produisent les événements d’élimination d’ADN. Nous avons identifié la protéine de type Polycomb, Ezl1, et montré qu’elle est une histone methyltransferase qui présente une dualité de substrat et catalyse à la fois la mise en place de K9me3 et K27me3 sur l’histone H3. Nous avons montré que la déposition de H3K9me3 et H3K27me3 dans le noyau en développement requiert les scnRNAs. Des analyses de séquençage haut débit ont montré que Ezl1 est requise pour l’élimination des longues séquences répétées germinales, suggérant que les scnRNA guident la déposition des marques d’histones au niveau de ces séquences. Au contraire des régions répétées du génome, les IES montrent une sensibilité différente aux scnRNAs et à Ezl1, suggérant que plusieurs voies partiellement chevauchantes sont impliquées dans leur élimination. Notre étude montre que des caractéristiques intrinsèques des séquences d’ADN, telles que leur taille, peut contribuer à la définition des séquences germinales à éliminer. De manière intéressante, nous avons aussi montré que Ezl1 est requise pour la répression transcriptionnelle des éléments transposables. Nous suggérons que les voies H3K9me3et H3K27me3 coopèrent et contribuent à préserver le génome somatique de Paramecium des parasites génomiques. / Eukaryotic genomes are organized into chromatin, a complex nucleoprotein structureessential for the regulation of gene expression and for maintaining genome stability.Ciliates provide excellent model organisms with which to gain better understandinginto the regulation of genome stability in eukaryotes. In the ciliate Parameciumtetraurelia, differentiation of the somatic genome from the germline genome ischaracterized by massive and reproducible programmed DNA elimination events. Longregions of several kilobases in length, containing repeated sequences and transposableelements are imprecisely eliminated, whereas 45,000 short, dispersed, single-copyInternal Eliminated Sequences (IESs) are precisely excised at the nucleotide level. Aspecific class of small RNAs, called scnRNAs, is involved in the epigenetic regulation ofDNA deletion. How scnRNAs may guide DNA elimination in Paramecium remains tobe discovered. Here, we investigated whether chromatin structure, in particular histonepost-translational modifications known to be associated with repressive chromatin,might control DNA elimination. We showed that trimethylated lysine 9 and 27 onhistone H3 (H3K9me3 and H3K27me3) appear in the developing somaticmacronucleus when DNA elimination occurs. We identified the Polycomb-groupprotein, Ezl1, and showed that it is a dual histone methyltransferase that catalyzes bothH3K9me3 and H3K27me3 in vitro and in vivo. Genome-wide analyses show thatscnRNA-mediated H3K9me3 and H3K27me3 deposition is necessary for theelimination of long, repeated germline DNA. Conversely, single copy IESs displaydifferential sensitivity to depletion of scnRNAs and Ezl1, unveiling the existence ofpartially overlapping pathways in programmed DNA elimination. Our study revealsthat cis-acting determinants, such as DNA length, also contribute to the definition ofgermline sequences to delete. We further showed that Ezl1 is required fortranscriptional repression of transposable elements. We suggest that H3K9me3 andH3K27me3 pathways cooperate and contribute to safeguard the Paramecium somaticgenome against intragenomic parasites.
Identifer | oai:union.ndltd.org:theses.fr/2016USPCC250 |
Date | 30 September 2016 |
Creators | Frapporti, Andrea |
Contributors | Sorbonne Paris Cité, Duharcourt, Sandra |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image |
Page generated in 0.0024 seconds