In this paper we study the hierarchical structure of the 2-d polyominoes. We introduce a new infinite family of polyominoes which we prove tiles a strip. We discuss applications of algebra to tiling. We discuss the algorithmic decidability of tiling the infinite plane Z x Z given a finite set of polyominoes. We will then discuss tiling with rectangles. We will then get some new, and some analogous results concerning the possible hierarchical structure for the 3-d polycubes.
Identifer | oai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-2437 |
Date | 01 January 2015 |
Creators | Saxton, Michael |
Publisher | STARS |
Source Sets | University of Central Florida |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations |
Page generated in 0.002 seconds