Return to search

Applications of Data Mining on Drug Safety: Predicting Proper Dosage of Vancomycin for Patients with Renal Insufficiency and Impairment

Abstract
Drug misuses result in medical resource wastes and significant society costs. Due to the narrow therapeutic range of vancomycin, appropriate vancomycin dosage is difficult to determine. When inappropriate dosage is used, such side effects as poisoning reaction or drug resistance may occur. Clinically, medical professionals adjust drug protocols of vancomycin based on the Therapeutic Drug Monitoring (TDM) results. TDM is usually defined as the clinical use of drug blood concentration measurements as an aid in dosage finding and adjustment. However, TDM cannot be applied to first-time treatments and, in case, dosage decisions need to reply on medical professionals¡¦ clinical experiences and judgments.
Data mining has been applied in various medical and healthcare applications. In this study, we will employ a decision-tree induction (specifically, C4.5) and a backpropagation neural network technique for predicting the appropriateness of vancomycin usage for patients with renal insufficiency and impairment. In addition, we will evaluate whether the use of the boosting and bagging algorithms will improve predictive accuracy.
Our empirical evaluation results suggest that use of the boosting and bagging algorithms could improve predictive accuracy. Specifically, use of C4.5 in conjunction with the AdaBoost algorithm achieves an overall accuracy of 79.65%, which significantly improves that of the existing practice, recording an accuracy rate at 41.38%. With respect to the appropriateness category (¡§Y¡¨) and the inappropriateness category (¡§N¡¨), C4.5 in conjunction with the AdaBoost algorithm can achieve a recall rate at 78.75% and 80.25%, respectively. Hence, the incorporation of data mining techniques to decision support would enhance the drug safety, which in turn, would improve patient safety and reduce subsequent medical resource wastes.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0824104-162427
Date24 August 2004
CreatorsYon, Chuen-huei
ContributorsChih-Ping Wei, Hsin-Hui Lin, Fan-Hui Lin, Tsang-Hsiang Cheng
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0824104-162427
Rightsoff_campus_withheld, Copyright information available at source archive

Page generated in 0.0018 seconds