Return to search

Incorporating Multiresolution Analysis With Multiclassifiers And Decision Fusion For Hyperspectral Remote Sensing

The ongoing development and increased affordability of hyperspectral sensors are increasing their utilization in a variety of applications, such as agricultural monitoring and decision making. Hyperspectral Automated Target Recognition (ATR) systems typically rely heavily on dimensionality reduction methods, and particularly intelligent reduction methods referred to as feature extraction techniques. This dissertation reports on the development, implementation, and testing of new hyperspectral analysis techniques for ATR systems, including their use in agricultural applications where ground truthed observations available for training the ATR system are typically very limited. This dissertation reports the design of effective methods for grouping and down-selecting Discrete Wavelet Transform (DWT) coefficients and the design of automated Wavelet Packet Decomposition (WPD) filter tree pruning methods for use within the framework of a Multiclassifiers and Decision Fusion (MCDF) ATR system. The efficacy of the DWT MCDF and WPD MCDF systems are compared to existing ATR methods commonly used in hyperspectral remote sensing applications. The newly developed methods’ sensitivity to operating conditions, such as mother wavelet selection, decomposition level, and quantity and quality of available training data are also investigated. The newly developed ATR systems are applied to the problem of hyperspectral remote sensing of agricultural food crop contaminations either by airborne chemical application, specifically Glufosinate herbicide at varying concentrations applied to corn crops, or by biological infestation, specifically soybean rust disease in soybean crops. The DWT MCDF and WPD MCDF methods significantly outperform conventional hyperspectral ATR methods. For example, when detecting and classifying varying levels of soybean rust infestation, stepwise linear discriminant analysis, results in accuracies of approximately 30%-40%, but WPD MCDF methods result in accuracies of approximately 70%-80%.

Identiferoai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-3680
Date11 December 2009
CreatorsWest, Terrance Roshad
PublisherScholars Junction
Source SetsMississippi State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations

Page generated in 0.002 seconds