Existing classification analysis techniques (e.g., decision tree induction,) generally exhibit satisfactory classification effectiveness when dealing with data with non-skewed class distribution. However, real-world applications (e.g., churn prediction and fraud detection) often involve highly skewed data in decision outcomes. Such a highly skewed class distribution problem, if not properly addressed, would imperil the resulting learning effectiveness.
In this study, we empirically evaluate three different approaches, namely the under-sampling, the over-sampling and the multi-classifier committee approaches, for addressing classification with highly skewed class distribution. Due to its popularity, C4.5 is selected as the underlying classification analysis technique. Based on 10 highly skewed class distribution datasets, our empirical evaluations suggest that the multi-classifier committee generally outperformed the under-sampling and the over-sampling approaches, using the recall rate, precision rate and F1-measure as the evaluation criteria. Furthermore, for applications aiming at a high recall rate, use of the over-sampling approach will be suggested. On the other hand, if the precision rate is the primary concern, adoption of the classification model induced directly from original datasets would be recommended.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0809104-235914 |
Date | 09 August 2004 |
Creators | Ling, Shih-Shiung |
Contributors | Tsang-Hsiang Cheng, San -Yi Huang, Chih-Ping Wei, Te -Min Chang |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0809104-235914 |
Rights | withheld, Copyright information available at source archive |
Page generated in 0.0017 seconds