Return to search

Biodegradation and composting profiles of woolscour wastes

This thesis investigated the final products from the current effluent treatment system for woolscouring (wool washing) plants, namely, (i) sludge produced from the chemical flocculation of solids in the wastewater from the wash bowls, and (ii) concentrated suint (sheep sweat) produced from evaporation of the liquid phase separated from the sludge. In addition, fibrous wastes from the woolscouring process were studied. The aims of the study were to (i) investigate whether suint could be applied in a sustainable way to arable land as a potassium fertiliser, and (ii) assess the conditions under which the sludge could be composted for use as a soil conditioner to return organic matter to soil. Experiments involving suint were performed at both laboratory and glasshouse scales, while experiments involving the solid woolscour wastes were based both in the laboratory and using a small-scale (4.5 m3 total capacity) in-vessel composting unit established at a New Zealand woolscour. Decomposition was measured using net-nitrogen mineralisation and weight loss methods. Suint, the water-soluble contaminants on the fleece, contained high levels of potassium (20% on a dry weight basis) and also appreciable quantities of sulphur, sodium, and chlorine. Biological treatment before evaporation stabilised the resulting suint and improved the consistency of its composition. Suint did not affect the soil processes examined, in that it partly decomposed in soil, did not inhibit the turnover of model organic compounds, did not affect soil properties such as pH and electrical conductivity, and did not lead to increased leaching of mineral nitrogen. Suint was either neutral or positive towards plant performance when applied to soil at a rate of 100 kg potassium per hectare. Suint was therefore judged to be suitable for application to land and could be targeted to soils known to be deficient in potassium or to areas where crops with a high potassium demand are grown. Sludge, composed of dirt (soil particles, faecal matter, and skin and fibre debris) and wool grease, was highly variable in terms of its rate of decomposition, ranging from 0.8 to 27.8% of the initial total nitrogen mineralised over 30 days at 37℃. Fibrous wastes, such as opener (fibre and contaminants removed from the wool by agitation prior to scouring) and scoured wool cleaner (wool fibre and dust removed from scoured and dried wool) wastes, also showed variability in decomposition rates. Sludge decomposition was improved by as much as threefold when co-incubated with fibrous wastes. Although it was shown that the polyacrylamide and pesticide content of sludge did not inhibit its decomposition, the effect of the grease content was not fully understood. Chemical properties of woolscour sludge, such as the carbon to nitrogen ratio, suggested that sludge was a substrate of good resource quality. From a biological perspective, however, the data suggested that woolscour sludge was limited in available nutrients; sludge nitrogen was derived principally from keratin, which decomposed at a low rate resulting in the slow release of mineral nitrogen and low levels of microbial activity. Thus, sludge appeared a poor substrate for composting. However, the results from composting trials indicated that the sludge could be successfully processed after blending with a bulking agent such as sawdust. The blended material showed a 90% reduction in wool grease over 21 days of composting when the moisture content of the composting mass was kept optimal. Compost temperature exceeded 55℃ when wool fibre was added to the blend. Initial results from a case study involving the commercial composting of the entire sludge production (16 tonnes per day) from a New Zealand woolscour indicated that a saleable compost could be produced from a material that would otherwise go to landfill, and served to illustrate the commercial significance of these research results.

Identiferoai:union.ndltd.org:ADTP/273868
Date January 2003
CreatorsKroening, Steven James
PublisherUniversity of Canterbury. Biological Sciences
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsCopyright Steven James Kroening, http://library.canterbury.ac.nz/thesis/etheses_copyright.shtml

Page generated in 0.0022 seconds