Return to search

Hluboké neuronové sítě: implementace pro vestavěné systémy / Deep Neural Networks: Embedded System Implementation

The goal of this thesis is to firstly design and implement an application for embeddedsystems which will classify MNIST numbers and secondly optimize energy and memoryrequirements of this network. The basics of neural networks, Cortex-M processor cores andembedded devices are described in the theoretical part. Followed by implementation details.Networks learning is done with Python and Theano library on a PC. The network is thenconverted to C for a board STM32F429 Discovery. Last part consist of network optimization,which focuses on convolution, dot product and number representation of weights and biasesof the network.

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:385971
Date January 2018
CreatorsMatěj, Aleš
ContributorsŠimek, Václav, Mrázek, Vojtěch
PublisherVysoké učení technické v Brně. Fakulta informačních technologií
Source SetsCzech ETDs
LanguageCzech
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0021 seconds