Return to search

DEFECTS IN GaN: AN EXPERIMENTAL STUDY

This work examines extended, point, and surface defects in GaN by means of electric force microscopy, photoluminescence and deep-level transient spectroscopy. Modeling of the surface band bending, its origin, and the effects of fabrication processing steps are discussed in the first part of the dissertation. Experimental results indicate that spontaneous polarization does not play a predominant role in GaN band bending. An increase of surface band bending due to annealing and etching was observed, while passivation did not produce changes. However, passivation did reduce reverse-bias leakage current by one to two orders of magnitude in GaN Schottky diodes. The optical properties of GaN were found to be sensitive to fabrication processing steps, most likely due to changes in the total density of surface states.The second part of this dissertation concerns the reduction of extended defects and associated deep levels in layers of GaN grown on different templates. Templates employing a low temperature GaN nucleation layer, epitaxial lateral overgrowth, and SiNx nanonetwork are compared in terms of deep level concentrations in the resulting GaN films. The concentrations of two types of traps, A (Ec-ET ~ 0.54-0.58 eV) and B (Ec-ET ~ 0.20-0.24 eV), were the highest for the sample with a low temperature nucleation layer and lowest for a sample with a 6 min SiNx deposition time. We surmise that the defects responsible for the dominant trap A are located along dislocation lines and form clusters.In the last part we investigate the piezoelectric and ferroelectric properties of PZT in Pb(Zr, Ti)O3(PZT)/GaN structures, and the effects of interface states. Sol-gel derived thin PZT films on GaN and Pt/Ti/SiO2/Si surfaces were studied by piezoresponse force microscopy (PFM), where quantitative characterization of piezoelectric properties of PZT films was performed. Superior piezoelectric properties of PZT/GaN/sapphire structures as compared to PZT/ Pt/Ti/SiO2/Si structures were observed and explained by a different preferred orientation of PZT. Despite the possible existence of a strong depolarization field at the PZT/GaN interface, we confirm with PFM the presence of a remanent polarization in PZT/GaN/sapphire structures.

Identiferoai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd_retro-1071
Date01 January 2007
CreatorsChevtchenko, Serguei Aleksandrovich
PublisherVCU Scholars Compass
Source SetsVirginia Commonwealth University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceRetrospective ETD Collection
Rights© The Author

Page generated in 0.0082 seconds