The goal of this thesis is to firstly design and implement an application for embeddedsystems which will classify MNIST numbers and secondly optimize energy and memoryrequirements of this network. The basics of neural networks, Cortex-M processor cores andembedded devices are described in the theoretical part. Followed by implementation details.Networks learning is done with Python and Theano library on a PC. The network is thenconverted to C for a board STM32F429 Discovery. Last part consist of network optimization,which focuses on convolution, dot product and number representation of weights and biasesof the network.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:385971 |
Date | January 2018 |
Creators | Matěj, Aleš |
Contributors | Šimek, Václav, Mrázek, Vojtěch |
Publisher | Vysoké učení technické v Brně. Fakulta informačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.002 seconds