Cette thèse présente une tentative d'approche du problème de la détection et discrimination des petits véhicules dans des images aériennes en vue verticale par l'utilisation de techniques issues de l'apprentissage profond ou "deep-learning". Le caractère spécifique du problème permet d'utiliser des techniques originales mettant à profit les invariances des automobiles et autres avions vus du ciel.Nous commencerons par une étude systématique des détecteurs dits "single-shot", pour ensuite analyser l'apport des systèmes à plusieurs étages de décision sur les performances de détection. Enfin nous essayerons de résoudre le problème de l'adaptation de domaine à travers la génération de données synthétiques toujours plus réalistes, et son utilisation dans l'apprentissage de ces détecteurs. / The following manuscript is an attempt to tackle the problem of small vehicles detection in vertical aerial imagery through the use of deep learning algorithms. The specificities of the matter allows the use of innovative techniques leveraging the invariance and self similarities of automobiles/planes vehicles seen from the sky.We will start by a thorough study of single shot detectors. Building on that we will examine the effect of adding multiple stages to the detection decision process. Finally we will try to come to grips with the domain adaptation problem in detection through the generation of better looking synthetic data and its use in the training process of these detectors.
Identifer | oai:union.ndltd.org:theses.fr/2018NORMC276 |
Date | 20 December 2018 |
Creators | Ogier du Terrail, Jean |
Contributors | Normandie, Jurie, Frédéric |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds