Return to search

Deep-trench Rie Optimization For High Performance Mems Microsensors

This thesis presents the optimization of deep reactive ion etching process (DRIE) to achieve high precision 3-dimensional integrated micro electro mechanical systems
(MEMS) sensors with high aspect ratio structures. Two optimization processes have been performed to achieve 20 &amp / #956 / m depth for 1 &amp / #956 / m opening for a dissolved wafer process (DWP) and to achieve 100 &amp / #956 / m depth for 1 &amp / #956 / m opening for silicon-on-glass (SOG) process. A number of parameters affecting the etch rate and profile angle are investigated, including the step times, etch step pressure, platen power, and electrode
temperature. Silicon etch samples are prepared and processed in METU-MET facilities to understand and optimize the DRIE process parameters that can be used for the production of MEMS gyroscopes and accelerometers. The etch samples for DWP are masked using a photoresist, Shipley S1813. After the optimization process, vertical trench profiles are achieved with minimum critical dimension loss for trench depths
up to 20 &amp / #956 / m. Since the selectivity of the resist is not sufficient for 100 &amp / #956 / m deep trench etch process, silicon dioxide (SiO2) is used as the mask for this process. At the
end of the optimization processes, more than 100 &amp / #956 / m depth for 1 &amp / #956 / m opening with almost vertical sidewalls are achieved. In summary, this study provides an extensive understanding of the DRIE process for successful implementations of integrated MEMS sensors.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12608719/index.pdf
Date01 August 2007
CreatorsAydemir, Akin
ContributorsTuran, Rasit
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.0024 seconds