Return to search

Deep Brain Stimulation of the Subthalamic and Entopeduncular Nuclei in an Animal Model of Tardive Dyskinesia

Deep brain stimulation (DBS) has emerged as a potential intervention for treatment-resistant tardive dyskinesia (TD). Despite promising case reports, no consensus exists regarding optimal stimulation parameters, neuroanatomical target for DBS in TD, or mechanisms underlying its anti-dyskinetic effects. We used vacuous chewing movements (VCMs) in rats treated chronically with haloperidol (HAL) as a TD model to address some of these issues.
We show that acute DBS applied to the subthalamic nucleus (STN) or the entopeduncular nucleus (EPN) suppresses VCMs without affecting locomotor activity. Using immediate early gene mapping with zif268 as an index of neuronal activity, we found that STN-DBS induced decreases in activity throughout the basal ganglia, whereas EPN-DBS increased activity in projection regions. While chemical inactivation of the STN or EPN with the GABAA agonist muscimol also suppressed VCMs, muscimol infusion did not mimic the changes in neuronal activity induced by DBS, suggesting that DBS is not equivalent to functional inactivation.
We next examined the contribution of serotonin (5-HT) and dopamine (DA) to the anti-dyskinetic effects of DBS. Decreasing 5-HT transmission pharmacologically or with serotonergic lesions decreased VCMs. Using microdialysis and zif268 mapping, we determined that STN- but not EPN-DBS decreased 5-HT release and activity of raphe neurons. However, when the decrease in 5-HT induced by STN-DBS was prevented by pre-treating rats with fluoxetine or fenfluramine, we found that decreasing 5-HT is not necessary for the anti-dyskinetic effects of DBS. STN-DBS transiently increased striatal DA release in intact rats only, whereas EPN-DBS had no effect on DA release. Moreover, pharmacologically elevating DA levels did not suppress VCMs. Together these findings lead us to conclude that increased DA release does not contribute to the anti-dyskinetic effects of DBS.
Finally, we compared depressive- and anxiety-like behaviours induced by chronic DBS of the EPN and STN, since adverse psychiatric effects of DBS have become a significant clinical concern. STN-DBS but not EPN-DBS induced depressive-like behaviour in a learned helplessness task.
We established that the chronic HAL VCM model preparation may be used to explore mechanisms underlying anti-dyskinetic and psychiatric effects of DBS, and provided the first investigations into these mechanisms.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OTU.1807/43383
Date12 December 2013
CreatorsCreed, Meaghan Claire
ContributorsNobrega, José
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.0028 seconds