Deep water corals are an understudied yet biologically important and fragile ecosystem under threat from recent increasing temperatures and high carbon dioxide emissions. Using 454 sequencing, we develop 14 new microsatellite markers for the deep water coral Eguchipsammia fistula, collected from the Red Sea but found in deep water coral ecosystems globally. We tested these microsatellite primers on 26 samples of this coral collected from a single population. Results show that these corals are highly clonal within this population stemming from a high level of asexual reproduction. Mitochondrial studies back up microsatellite findings of high levels of genetic similarity. CO1, ND1 and ATP6 mitochondrial sequences of E. fistula and 11 other coral species were used to build phylogenetic trees which grouped E. fistula with shallow water coral Porites rather than deep sea L. Petusa.
Identifer | oai:union.ndltd.org:kaust.edu.sa/oai:repository.kaust.edu.sa:10754/262733 |
Date | 12 1900 |
Creators | Mughal, Mehreen |
Contributors | Berumen, Michael L., Biological and Environmental Sciences and Engineering (BESE) Division, Ali, Shahjahan, Kaartvedt, Stein |
Source Sets | King Abdullah University of Science and Technology |
Language | English |
Detected Language | English |
Type | Thesis |
Rights | 2015-01-01, At the time of archiving, the student author of this thesis opted to temporarily restrict access to it. The full text of this thesis became available to the public after the expiration of the embargo on 2015-01-01. |
Page generated in 0.0024 seconds