Return to search

INVESTIGATION OF WELD DEFECTS USING THERMAL IMAGING SYSTEM

Continuous welding is one of the prominent techniques used in producing seamless piping used in many applications such as the mining and the oil and gas industries. Weld defects cause significant loss of time and money in the piping production industry. Therefore, there is a need for effective online weld defects detection systems. A laser-based weld defects detection (LBWDD) system has been developed by the industrial partner. However, the current LBWDD system can only detect some geometrically based weld defects, but not material inhomogeneity such as voids, impurities, inclusions, etc. The main objective of this study is to assess the predictability of a thermal imaging-based weld defects detection system (TIBWDD) using an IR camera that can be integrated with the current LBWDD system. The aim of the integrated detection system is to be able to detect a wider range of weld defects. A test rig has been designed and used to carry out a set of emissivity (ε) calculation experiments considering three different materials – Aluminum 5154 (Al), Stainless Steel 304L (SS), and Low Carbon Steel A131 (LCS) with two surface finishes 0.25 μm (FM) and 2.5 μm (RM), which are relevant to pipe welding operations. Al showed least change in ε varying from 0.162 to 0.172 for FM samples and from 0.225 to 0.250 for RM samples from 50°C to 550°C. LCS showed highest change in ε varying from 0.257 – 0.918 for FM samples and from 0.292 to 0.948 for RM samples. SS showed a consistent increase in ε for both FM and RM samples. Experimental and numerical analysis have been carried out mimicking two sets of possible weld defects investigating defect size, Dh, and distance between effect and sample surface, δ. Results showed that the δ based defects that are located within 3 mm can be detected by the IR camera. Defects with Dh = 1. 5 mm can be detected by the IR camera with and without glass wool. Laser welding simulations using 2D and 3D Gaussian heat source models have been carried out to assess the predictability of a set of possible weld defects. The heat source models have been validated using experimental data. Three sets of defects were considered representing material-based inhomogeneity, step and inclined misalignment defects. For material-based inhomogeneity in thin plates all defects located at 1.25 mm from the surface are found detectable as ΔT (temperature difference obtained on surface) > ΔTmin (detectability limit of TIBWDD system). For inhomogeneity defects in thick plates, except defects of 2.5 mm in square size all other defects were found detectable as ΔT > ΔTmin. All step misalignment defects were detected for thin and thick plates. In the case of inclined misalignment defects, for thin plates, the misalignment error in the thin plate had to be at least 0.275 mm to be detected. In the case of thick plates, the misalignment error had be at least 0.375 mm to be detected. Overall, results of the present study confirm that thermal imaging can be successfully used in detecting material-based and geometry-based weld defects. / Thesis / Master of Applied Science (MASc)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/26908
Date January 2021
CreatorsGuduri, Nikhil
ContributorsHamed, Mohamed, Mechanical Engineering
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0018 seconds