We focus on first-order definability in the quasiordered class of finite digraphs ordered by embeddability. At first we will prove definability of each digraph up to size three. We will need to add to the quasiorder structure some digraphs as constants, so we try to find the needed set of constants as small as possible with small digraph as well. Gradually we make instruments that we can use to express the inner structure of each digraphs in the language of embeddability. At the end we investigate definability in the closely related lattice of universal classes of digraphs. We show that the set of finitely generated and also the set of finitely axiomatizable universal classes are definable subsets of the lattice.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:313911 |
Date | January 2012 |
Creators | Lechner, Jiří |
Contributors | Stanovský, David, Kepka, Tomáš |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0019 seconds