Return to search

Tensor techniques in signal processing: algorithms for the canonical polyadic decomposition (PARAFAC)

SILVA, A. P. Tensor techniques in signal processing: algorithms for the canonical polyadic decomposition (PARAFAC). 2016. 124 f. Tese (Doutorado em Engenharia de Teleinformática) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2016. / Submitted by Marlene Sousa (mmarlene@ufc.br) on 2016-09-01T18:41:38Z
No. of bitstreams: 1
2016_tese_apsilva.pdf: 1648271 bytes, checksum: be3747d533837939c3a410d2f017ddfa (MD5) / Approved for entry into archive by Marlene Sousa (mmarlene@ufc.br) on 2016-09-01T18:42:06Z (GMT) No. of bitstreams: 1
2016_tese_apsilva.pdf: 1648271 bytes, checksum: be3747d533837939c3a410d2f017ddfa (MD5) / Made available in DSpace on 2016-09-01T18:42:06Z (GMT). No. of bitstreams: 1
2016_tese_apsilva.pdf: 1648271 bytes, checksum: be3747d533837939c3a410d2f017ddfa (MD5)
Previous issue date: 2016-06-29 / Low rank tensor decomposition has been playing for the last years an important role in many applications
such as blind source separation, telecommunications, sensor array processing, neuroscience,
chemometrics, and data mining. The Canonical Polyadic tensor decomposition is very attractive when
compared to standard matrix-based tools, manly on system identification. In this thesis, we propose:
(i) several algorithms to compute specific low rank-approximations: finite/iterative rank-1 approximations,
iterative deflation approximations, and orthogonal tensor decompositions. (ii) A new strategy
to solve multivariate quadratic systems, where this problem is reduced to a best rank-1 tensor approximation
problem. (iii) Theoretical results to study and proof the performance or the convergence of
some algorithms. All performances are supported by numerical experiments

Identiferoai:union.ndltd.org:IBICT/oai:www.repositorio.ufc.br:riufc/19361
Date29 June 2016
CreatorsSilva, Alex Pereira da
ContributorsMota, João César Moura, Almeida, André Lima Férrer de
Source SetsIBICT Brazilian ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Repositório Institucional da UFC, instname:Universidade Federal do Ceará, instacron:UFC
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0021 seconds