Cataract is a condition in the eye that if left untreated, could lead to blindness. One of the effective ways to treat cataract is the removal of the cataractous natural crystalline lens and implantation of an artificial lens called an intraocular lens(IOL). The designs of the IOLs have shown improvements over the years to further imitate natural human vision. A need for an objective testing and analysis tool for the latest IOLs grow with the advancements of the IOLs.In this dissertation, I present a system capable of objective test and analysis of the advanced IOLs. The system consists of-Model eye into which an IOL can be inserted to mimic conditions of the human eye.-Modulation Transfer Function measurement setup capable of through-focus test for depth of field studies and polychromatic test for study of effects of chromatization.-Use of Defocus Transfer Function to simulate depth of field characteristic of rotationally symmetric multifocal designs and extension of the function to polychromatic conditions.-Several target imaging experiments for comparison of stray light artifacts and simulation using a non-sequential ray trace package.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/195496 |
Date | January 2008 |
Creators | Choi, Junoh |
Contributors | Schwiegerling, James T., Schwiegerling, James T., Schwiegerling, James T., Greivenkamp, John E., Koshel, Richard J. |
Publisher | The University of Arizona. |
Source Sets | University of Arizona |
Language | English |
Detected Language | English |
Type | text, Electronic Dissertation |
Rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. |
Page generated in 0.0017 seconds