An intermediate level model for tropical climatology including atmosphere-land-ocean interaction is developed. The model contains basically linearized steady state primitive equations with simplified thermodynamics. A simple hydrological cycle is also included. Special attention has been paid to land surface processes in attempting to study climate change caused by Amazon deforestation. In comparison with previous simple modeling work on tropical climatology or anomaly, the present model is more sophisticated in the sense that it predicts all the important meteorological variables with little input, while being computationally simple. The modeled tropical climatology appears to be realistic. The model generally better simulates the ENSO anomaly compared to many previous simple model simulations. We provide analysis of model results and discuss model deficiencies and possible improvements of the model. The climatic impact of Amazon deforestation is studied in the context of this model. Model results show a much weakened Atlantic Walker/Hadley circulation as a result of the existence of a strong positive feedback loop in the atmospheric circulation system and the hydrological cycle. The regional climate is very sensitive to albedo change and sensitive to evapotranspiration change. The pure dynamical effect of surface roughness on convergence is small, but the surface flow anomaly displays intriguing features. Analysis of the thermodynamic equation reveals the balance among convective heating, adiabatic cooling and radiation largely determines the deforestation response. The model provides a plausible mechanism for the common results of many GCM simulations. Studies of the consequences of hypothetical continuous deforestation suggest that the replacement of forest by desert may be able to sustain a desert-like climate. When a simple mixed layer ocean model is coupled with the atmospheric model, the results suggest a 1 °C decrease in SST gradient across the equatorial Atlantic ocean in response to Amazon deforestation. The magnitude of the decrease depends on the coupling strength.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/186999 |
Date | January 1994 |
Creators | Zeng, Ning. |
Contributors | Dickinson, Robert E., Krider, E. Philip, Sellers, William D. |
Publisher | The University of Arizona. |
Source Sets | University of Arizona |
Language | English |
Detected Language | English |
Type | text, Dissertation-Reproduction (electronic) |
Rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. |
Page generated in 0.002 seconds