Return to search

Fedosov Quantization and Perturbative Quantum Field Theory

Fedosov has described a geometro-algebraic method to construct in a canonical way a deformation of the Poisson algebra associated with a finite-dimensional symplectic manifold (\\\"phase space\\\"). His algorithm gives a non-commutative, but associative, product (a so-called \\\"star-product\\\") between smooth phase space functions parameterized by Planck\\\'s constant ℏ, which is treated as a deformation parameter. In the limit as ℏ goes to zero, the star product commutator goes to ℏ times the Poisson bracket, so in this sense his method provides a quantization of the algebra of classical observables. In this work, we develop a generalization of Fedosov\\\'s method which applies to the infinite-dimensional symplectic \\\"manifolds\\\" that occur in Lagrangian field theories. We show that the procedure remains mathematically well-defined, and we explain the relationship of this method to more standard perturbative quantization schemes in quantum field theory.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:15-qucosa-224698
Date11 May 2017
CreatorsCollini, Giovanni
ContributorsUniversität Leipzig, Fakultät für Physik und Geowissenschaften, Prof. Dr. Stefan Hollands, Prof. Dr. Stefan Waldmann, Prof. Dr. Stefan Hollands
PublisherUniversitätsbibliothek Leipzig
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis
Formatapplication/pdf

Page generated in 0.002 seconds