This dissertation is an investigation into the classification of all hyperbolic manifolds which admit a reducible Dehn filling and a toroidal Dehn filling with distance 3. The first example was given by Boyer and Zhang. They used the Whitehead link. Eudave-MunĚoz and Wu gave an infinite family of such hyperbolic manifolds using tangle arguments. I show in this dissertation that these are the only hyperbolic manifolds admitting a reducible Dehn filling and a toroidal Dehn filling with distance 3. The main tool to prove this is to use the intersection graphs on surfaces introduced and developed by Gordon and Luecke. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/6682 |
Date | 05 November 2009 |
Creators | Kang, Sungmo |
Source Sets | University of Texas |
Language | English |
Detected Language | English |
Format | electronic |
Rights | Copyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works. |
Page generated in 0.002 seconds