Na primeira parte do trabalho estudamos a equação de Schrödinger logarítmica com um delta potencial; $V(x)=-\\gamma \\,\\delta(x)$, onde $\\delta$ é a distribuição de Dirac na origem e o parâmetro real $\\gamma$ descreve a intensidade do potencial. Estabelecemos a existência e unicidade das soluções do problema de Cauchy associado em um espaço de funções adequado. No caso do potencial atrativo ($\\gamma>0$), calculamos de forma explícita o seu único ground state e mostramos a sua estabilidade orbital.\\\\ A segunda parte trata detalhadamente da equação de Schrödinger logarítmica com um delta derivada potencial; $V(x)=-\\gamma\\, \\delta^{\\prime}(x)$. A boa colocação global para o problema de Cauchy é verificada em um espaço de funções adequado. No caso do potencial atrativo ($\\gamma>0$), o conjunto dos ground states é completamente determinado. Mais precisamente: se $0<\\gamma\\leq2$, então há um único ground state e é uma função ímpar; se $\\gamma>2$, então existem dois ground states não-simétricos. Em adição, provamos que cada ground state é orbitalmente estável através de uma abordagem variacional. Finalmente, usando a teoria de extensão de operadores simétricos, também mostramos um resultado de instabilidade para $\\gamma>2$. / The first part of this thesis deals with the logarithmic Schrödinger equation with a delta potential; $V(x)=-\\gamma \\,\\delta(x)$, where $\\delta$ is the Dirac distribution at the origin and the real parameter $\\gamma$ is interpreted as the strength of the potential. We establish the existence and uniqueness of the solutions of the associated Cauchy problem in a suitable functional framework. In the attractive potential case ($\\gamma>0$), we explicitly compute the unique ground state and we show their orbital stability .\\\\ The second part deals with the case of the logarithmic Schrödinger equation with a delta prime potential; $V(x)=-\\gamma\\, \\delta^{\\prime}(x)$. Global well-posedness is verified for the Cauchy problem in a suitable functional space. In the attractive potential case ($\\gamma>0$), the set of the ground state is completely determined. More precisely: if $0<\\gamma\\leq2$, then there is a single ground state and it is an odd function; if $\\gamma>2$, then there exist two non-symmetric ground states. Moreover, we show that every ground state is orbitally stable via a variational approach. Finally, by applying the theory of extensions of symetric operators, we also prove a result of instability for $\\gamma>2$.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-29082016-175729 |
Date | 16 May 2016 |
Creators | Alex Javier Hernandez Ardila |
Contributors | Jaime Angulo Pava, Ademir Pastor Ferreira, Orlando Francisco Lopes, José Felipe Linares Ramirez, Gaetano Siciliano |
Publisher | Universidade de São Paulo, Matemática, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds