The objective of this work is to design and implement an architectural framework for a web-based demand management system that allows an electric utility to reduce system peak load by automatically managing end-use appliances based on homeowners' preferences. The proposed framework comprises the following components: human user interface, home energy management (HEM) algorithms, web services for demand response communications, selected ZigBee and smart energy profile features for appliance interface, and security aspects for a web-based HEM system.
The proposed web-based HEM system allows homeowners to be more aware about their electricity consumption by allowing visualization of their real-time and historical electricity consumption data. The HEM system enables customers to monitor and control their household appliances from anywhere with an Internet connection. It offers a user-friendly and attractive display panel for a homeowner to easily set his/her preferences and comfort settings.
An algorithm to autonomously control appliance operation is incorporated in the proposed web-based HEM system, which makes it possible for residential customers to participate in demand response programs. In this work, the algorithm is demonstrated to manage power-intensive appliances in a single home, keeping the total household load within a certain limit while satisfying preset comfort settings and user preferences. Furthermore, an extended version of the algorithm is demonstrated to manage power-intensive appliances for multiple homes within a neighborhood.
As one of the demand response (DR)-enabling technologies, the web services-based DR communication has been developed to enable households without smart meters or advanced metering infrastructure (AMI) to participate in a DR event via the HEM system. This implies that an electric utility can send a DR signal via a web services-enabled HEM system, and appropriate appliances can be controlled within each home based on homeowner preferences. The interoperability with other systems, such as utility systems, third-party Home Area Network (HAN) systems, etc., is also taken into account in the design of the proposed web services-based HEM system. That is, it is designed to allow interaction with authorized third-party systems by means of web services, which are collectively an interface for machine-to-machine interaction.
This work also designs and implements device organization and interface for end-use appliances utilizing ZigBee Device Profile and Smart Energy Profile. Development of the Home Area Network (HAN) of appliances and the HAN Coordinator has been performed using a ZigBee network. Analyses of security risks for a web-based HEM system and their mitigation strategies have been discussed as well. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/23689 |
Date | 06 August 2013 |
Creators | Rahman, Md Moshiur |
Contributors | Electrical and Computer Engineering, Rahman, Saifur, Silva, Luiz A., Pipattanasomporn, Manisa |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf, application/vnd.openxmlformats-officedocument.wordprocessingml.document |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0023 seconds