Various forecasting tools, based on historical data, exist for planners of national networks that are very effective in planning national interventions to ensure energy security, and meet carbon obligations over the long term. However, at a local community level, where energy demand patterns may significantly differ from the national picture, planners would be unable to justify local and more appropriate intervention due to the lack of appropriate planning tools. In this research, a new methodology is presented that initially creates a virtual community of households in a small community based on a survey of a similar community, and then predicts the energy behaviour of each household, and hence of the community. It is based on a combination of the statistical data, and a questionnaire survey. The methodology therefore enables realistic predictions and can help local planners decide on measures such as embedding renewable energy and demand management. Using the methodology developed, a study has been carried out in order to understand the patterns of electricity consumption within UK households. The methodology developed in this study has been used to investigate the incentives currently available to consumers to see if it would be possible to shift some of the load from peak hours. Furthermore, the possibility of using renewable energy (RE) at community level is also studied and the results presented. Real time pricing information was identified as a barrier to understanding the effectiveness of various incentives and interventions. A new pricing criteria has therefore been developed to help developers and planners of local communities to understand the cost of intervention. Conclusions have been drawn from the work. Finally, suggestions for future work have been presented.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:582969 |
Date | January 2012 |
Creators | Ihbal, Abdel-Baset Mostafa Imbarek |
Contributors | Rajamani, Haile S.; Abd-Alhameed, Raed A. |
Publisher | University of Bradford |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/10454/5678 |
Page generated in 0.0015 seconds