La caractérisation de la neige est un enjeu important pour la gestion des ressources en eau et pour la prévision des risques d'avalanche. L'avènement des nouveaux satellites Radar de Synthèse d'Ouverture (RSO) bande X à haute résolution permet d'acquérir des données de résolution métrique avec une répétitivité journalière. Dans ce travail, un modèle de rétrodiffusion des ondes électromagnétiques de la neige sèche est adapté à la bande X et aux fréquences plus élevées. L'algorithme d'assimilation de données 3D-VAR est ensuite implémenté pour contraindre le modèle d'évolution de la neige SURFEX/Crocus à l'aide des observations satellitaires. Enfin, l'ensemble de ces traitements sont évalué à partir de données du satellite TerraSAR-X acquises sur le glacier d'Argentière dans la vallée de Chamonix. Cette première comparaison montre le fort potentiel de l'assimilation des données RSO bande X pour la caractérisation du manteau neigeux. / Characterization of snowpack structure is an important issue for the management of water resources and the prediction of avalanche risks. New Synthetic Aperture Radar (SAR) satellites in X-band at high-resolution allow us to acquire image data with metric resolution and daily observations. In this work, an electromagnetic backscattering model applicable for dry snow is adapted for X-band and higher frequencies. The 3D-VAR data assimilation algorithm is then implemented to constrain the evolution of the snow metamorphisme model SURFEX/Crocus using satellite observations. Finally, the algorithm is evaluated using image data acquired from TerraSAR-X satellite on the Argentiere glacier in the Chamonix Valley of the French Alps. This first comparison shows the high potential of the data assimilation assimilation method using X-band SAR data for characterization of the snowpack.
Identifer | oai:union.ndltd.org:theses.fr/2014REN1S132 |
Date | 21 March 2014 |
Creators | Phan, Xuan Vu |
Contributors | Rennes 1, Ferro-Famil, Laurent, Gay, Michel |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0038 seconds