We investigate the effect of the substitution of Ni, Ti and Co in MnBi using first principles calculations based on density functional theory (DFT) within the generalized gradient approximation (GGA). We also performed total energy calculations to compare different structures to determine the ground state structures and investigate their magnetic properties. Our calculation shows that the substitution of Ni, Co and Ti lowers the total magnetization of MnBi. We also found that the stable structure of Ni and Ti substitute is to replace Mn atoms in their regular site while the substitute Co is most stable when Co occupies the interstitial site of MnBi unit cell.
Identifer | oai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-3297 |
Date | 09 May 2015 |
Creators | Ababtin, Sultana Abdullah |
Publisher | Scholars Junction |
Source Sets | Mississippi State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Page generated in 0.0058 seconds