Return to search

Electronic excitations in complex systems: beyond density functional theory for real materials

Aujourd'hui il est possible d'étudier à partir des premier principes la réponse sous excitation de matériaux utilisés dans des applications modernes très variés. En effet, grâce à de récents développements théoriques, ainsi qu'à l'optimisation des algorithmes de calcul, les simulations ab initio ne sont plus seulement limitées à des systèmes idéaux simplifiés, mais elles ont finalement l'ambition de capturer toute la complexité de l'échantillon testé dans l'expérience. Dans ce contexte, ce mémoire porte sur l'étude, à l'aide de différentes approches ab initio, des excitations électroniques dans une gamme de matériaux complexes et nanostructurés. Pour accéder aux excitations électroniques, la connaissance de la densité de l'état fondamental du système n'est plus suffisante, ce qui signifie que l'on doit trouver le moyen approprié d'aller au-delà de la théorie de la fonctionnelle de la densité (DFT) standard. Deux voies ont été intensivement explorées: l'une est basée sur la densité dépendante du temps et l'autre sur les fonctions de Green. La théorie de la fonctionnelle de la densité dépendante du temps (TDDFT) a été proposée en 1984 par Runge et Gross, qui ont dérivé un théorème du type Hohenberg-Kohn pour l'équation de Schrödinger en fonction du temps. Le champ d'application de cette généralisation de la théorie de la fonctionnelle de la densité inclut le calcul des spectres de photo-absorption ou, plus généralement, l'étude de l'interaction de la matière avec des champs électromagnétiques ou des particules qui la perturbent. À présent, l'application la plus populaire de cette théorie est l'extraction des propriétés de l'état électronique excité, et en particulier des fréquences d'excitation électroniques. En appliquant la TDDFT, après avoir déterminé l'état fondamental d'une molécule ou un agrégat, nous pouvons explorer et comprendre son spectre d'absorption, ayant en même temps des informations extrêmement détaillées sur le comportement du système excité. La complexité du problème à plusieurs corps en TDDFT est cachée dans le potentiel d'échange et de corrélation dépendant du temps qui apparaît dans les équations de Kohn- Sham et pour lequel il est primordial de trouver une bonne approximation. Beaucoup d'approximations ont été proposées et testées pour les systèmes finis, où même la très simple approximation TDLDA a souvent donné de très bons résultats. En général, les approximations existantes pour la fonctionnelle d'échange et corrélation fonctionnent assez bien pour certaines propriétés, mais elles se montrent insuffisantes pour d'autres. Dans le cas des matériaux solides, la TDDLA ne parvient pas à reproduire les spectres d'absorption optique, qui sont par contre bien décrits par la résolution de l'équation de Bethe-Salpeter en combinaison avec l'approximation GW pour les états de quasi-électron. D'autre part, la TDLDA peut déjà conduire à des résultats excellents pour la fonction de perte d'énergie d'un solide. La solution de l'équation de Bethe-Salpeter est beaucoup plus onéreuse du point de vue numérique. Ainsi, on poursuit encore la recherche d'approximations fiables en TDDFT, et au fil du temps, on espère atteindre la même maturité qu'on trouve maintenant dans la DFT pour l'état fondamental. En particulier, de nouvelles perspectives (et ses limites) ont étés révélées pendant ces dernières années grâce à la combinaison de deux théories distinctes : la TDDFT et l'approche des fonctions de Green (dont l'approximation GW et l'équation de Bethe- Salpeter font partie). Ces deux approches peuvent partager dans la pratique le point de départ commun de la théorie de la fonctionnelle de la densité pour le calcul de l'état fondamental électronique. Leur combinaison permet d'allier la simplicité de l'une (TDDFT) avec la précision de l'autre (GW et Bethe-Salpeter), afin d'en déduire des noyaux d'échange et de corrélation pour les solides. À partir de ces noyaux nous avons aussi travaillé sur le développement de noyaux modèles pour des applications efficaces à des systèmes de grande taille. Le présent mémoire contient une vue d'ensemble relativement condensée de la TDDFT et des approches basées sur la théorie des fonctions de Green, avec des applications aux domaines des nanotechnologies, aux matériaux photovoltaïques et au stockage de données. Ces applications ont constitué notre principal sujet de recherche au cours des dernières années. Ce mémoire est organisée comme suit. Avant d'entrer dans le domaine des approches pour les états excités, nous donnons dans le chapitre 1 un bref aperçu des idées de base de la DFT pour l'état fondamental, ce qui nous permet d'expliquer pourquoi il faut aller au-delà de la DFT standard, d'introduire quelques concepts-clés et de fixer la notation de base qui sera utilisée dans ce mémoire. Les chapitres suivants font un point sur la théorie formelle, avec une brève présentation des approches théoriques utilisées pour étudier les excitations électroniques: le chapitre 2 est dédié aux approches GW et à l'équation de Bethe-Salpeter, tandis que la TDDFT et la théorie de la réponse linéaire sont décrites dans le chapitre 3. Les noyaux dérivés à partir de l'équation de Bethe-Salpeter et notre travail sur les noyaux modèles sont discutés dans le chapitre 4. Le chapitre 5 contient des applications de la TDDFT dans le domaine de la réponse linéaire aux nanostructures. L'objectif principal est d'obtenir des spectres fiables (en général des spectres d'absorption) à partir de calculs de premiers principes. En comparant ces spectres avec des courbes expérimentales, on peut normalement déduire des informations importantes qui ne sont pas directement accessibles dans les expériences. D'autre part, la connaissance détaillée des propriétés d'excitation électronique contribue à une meilleure compréhension de la physique de ces systèmes dans leur généralité. Le chapitre 6 présente des applications à des matériaux solides d'intérêt technologique. En particulier, nous nous sommes intéressé aux propriétés optiques des matériaux à changement de phase, utilisés dans le DVD re-inscriptibles, ainsi que aux états électroniques des absorbeurs et des oxydes transparents conducteurs pour les cellules solaires à couches minces. Le chapitre 7 est dédié aux cruciales interactions de van der Waals et au calcul – via la TDDFT – des paramètres qui les décrivent. Nous discutons à la fois des interactions entre deux agrégats, et entre un agrégat et une surface semi-conductrice. Le dernier chapitre 8 fait le point sur les résultats de notre réflexion.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00520068
Date22 April 2010
CreatorsBotti, Silvana
PublisherUniversité Claude Bernard - Lyon I
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
Typehabilitation ࠤiriger des recherches

Page generated in 0.002 seconds