Dental amalgams have been used for centuries as major restorative materials for decaying teeth. Amalgams are prepared by mixing alloy particles which contain Ag, Sn, and Cu as the major constituent elements with liquid Hg. The study of microstructure is essential in understanding the setting reactions and improving the properties of amalgams. Until the work reported in this dissertation, optical microscopy (OM), scanning electron microscopy (SEM), and x-ray diffractometry (XRD) were used commonly to analyze amalgam microstructures. No previous systematic transmission electron microscopy (TEM) study has been performed due to sample preparation difficulties and composite structure of dental amalgams. The goal of this research was to carry out detailed microstructural and compositional studies of dental amalgams. This was accomplished using the enhanced spatial resolution of the TEM and its associated microanalytical techniques, namely, scanning transmission electron microscopy (STEM), x-ray energy dispersive spectroscopy (XEDS) and micro-microdiffraction (μμD). A new method was developed for thinning amalgam samples to electron transparency using the "wedge technique." Velvalloy, a low-Cu amalgam, and Tytin, a high-Cu amalgam, were the two amalgams characterized. Velvalloy is composed of a Ag₂Hg₃ (γ₁)/HgSn₇₋₉ (γ₂) matrix surrounding unreacted Ag₃Sn (γ) particles. In addition, hitherto uncharacterized reaction layers between Ag₃Sn(γ)/Ag₂Hg₃ (γ₂) and Ag₂Hg₃ (γ₁)/HgSn₇₋₉ (γ₂) were observed and analyzed. An Ag-Hg-Sn (β₁) phase was clearly identified for the first time. In Tytin, the matrix consists of Ag₂Hg₃ (γ₁) grains. Fine precipitates of Cu₆Sn₅ (η') are embedded inside the γ₁ and at the grain boundaries. These precipitates are responsible for the improved creep resistance of Tytin compared to Velvalloy. The additional Cu has completely eliminated the γ₂ phase which is the weakest component of amalgams. Ag-Hg-Sn (β₁) and large grains of Cu₆Sn₅ (η') are found adjacent to the unreacted alloy particles. Tytin alloy particles contain Cu₃Sn (ε) precipitates in a matrix of Ag₃Sn (γ) and Ag₄Sn (β). SEM was used to correlate the TEM findings in the context of the general microstructure. The results are in good agreement with those published in the literature. The microstructural details reported here, many of which were not previously available, will help provide insight into the deformation mechanisms of dental amalgams.
Identifer | oai:union.ndltd.org:unt.edu/info:ark/67531/metadc277884 |
Date | 05 1900 |
Creators | Hooghan, Tejpal Kaur |
Contributors | Pinizzotto, Russell F., Weathers, Duncan L., Hu, Zhibing, Kozak, Michael R. |
Publisher | University of North Texas |
Source Sets | University of North Texas |
Language | English |
Detected Language | English |
Type | Thesis or Dissertation |
Format | xiii, 166 leaves : ill., Text |
Rights | Public, Copyright, Copyright is held by the author, unless otherwise noted. All rights reserved., Hooghan, Tejpal Kaur |
Page generated in 0.0025 seconds