Return to search

Mechanical properties of a new zinc-reinforced glass ionomer restorative material

Indiana University-Purdue University Indianapolis (IUPUI) / Objective: Zinc-reinforced glass ionomer restorative material (ZRGIC) has been proposed as an improved restorative material. The study compared the mechanical properties of a ZRGIC restorative material (ChemFil Rock, (Dentsply)), with three commercially available glass ionomers (GICs); Fuji IX GP Extra (GC America), Ketac Molar (3M ESPE) and EQUIA Fil (GC America). A resin composite, Premise (Kerr), was included as a control group except for fracture toughness. Methods: Fracture toughness (KIC) testing was done according to ISO 13586, using single edge notched-beam specimens (n=10), loaded until failure in a three-point bending test device. Specimens (n=9) for the hardness, roughness and abrasive wear testing were made by mixing and inserting the restorative materials into individual stainless steel molds followed by flattening and polishing. Knoop microhardness (KHN) was performed (25 g, 30 s),on pre-determined areas of the polished surfaces. For toothbrushing wear resistance and roughness, specimens were brushed in an automated brushing machine (200 g) with a suspension of dentifrice and water (1:1, w/v) for 20,000 strokes. Specimen surfaces were scanned in an optical profilometer before and after brushing to obtain surface roughness (Ra) and mean height (surface) loss using image subtraction and dedicated software. Data were analyzed using Wilcoxon Rank Sum tests (α=0.05). Results: ChemFil Rock had the highest change in surface roughness (Ra)(0.79±0.14; p<0.001) and the lowest microhardness (KHN) values (52.39±2.67; p<0.05) among all GICs. Its wear resistance was comparable to other GICs (p>0.05). ChemFil Rock had lower fracture toughness (0.99±0.07, KIC) compared to Equia Fil (p<0.01) and higher compared to the other GICs (p<0.01). Conclusion: The new ZRGIC restorative material showed intermediate fracture toughness, high change in surface roughness, and low microhardness compared to three other commercial GICs. All materials were supplied by respective manufacturers.

Identiferoai:union.ndltd.org:IUPUI/oai:scholarworks.iupui.edu:1805/3091
Date January 2012
CreatorsAl-Angari, Sarah Sultan
ContributorsCook, Norman Blaine, Lund, Melvin R., 1922, Cochran, Michael A. (Michael Alan), 1944-, Chu, Tien-Min Gabriel, Platt, Jeffrey A., 1958-, Hara, Anderson T.
Source SetsIndiana University-Purdue University Indianapolis
Languageen_US
Detected LanguageEnglish
TypeThesis

Page generated in 0.0116 seconds